We demonstrate continuous roll-to-roll production of highly conductive silver network films on a plastic substrate via mechanical and chemical welding processes. This process included three essential steps: (i) solvent spraying, (ii) roll compression, and (iii) salt treatment and washing. The sheet resistance of the resulting AgNW film was 5 Ω sq(-1) at 92% transmittance, which was the lowest sheet resistance and the highest transparency among the values reported previously for solution-processed AgNW electrodes. Moreover, the strong contacts among the AgNWs dramatically enhanced the mechanical stability of the network film. The resulting AgNW film was successfully applied to various organic electronic devices, such as organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs), and organic solar cells (OSCs).
We synthesized a series of acceptor-donor-acceptor-type small molecules (SIDPP-EE, SIDPP-EO, SIDPP-OE, and SIDPP-OO) consisting of a dithienosilole (SI) electron-donating moiety and two diketopyrrolopyrrole (DPP) electron-withdrawing moieties each bearing linear n-octyl (O) and/or branched 2-ethylhexyl (E) alkyl side chains. X-ray diffraction patterns revealed that SIDPP-EE and SIDPP-EO films were highly crystalline with pronounced edge-on orientation, whereas SIDPP-OE and SIDPP-OO films were less crystalline with a radial distribution of molecular orientations. Near-edge X-ray absorption fine structure spectroscopy disclosed an edge-on orientation with a molecular backbone tilt angle of ∼22° for both SIDPP-EE and SIDPP-EO. Our analysis of the molecular packing and orientation indicated that the shorter 2-ethylhexyl groups on the SI core promote tight π-π stacking of the molecular backbone, whereas n-octyl groups on the SI core hinder close π-π stacking to some degree. Conversely, the longer linear n-octyl groups on the DPP arms facilitate close intermolecular packing via octyl-octyl interdigitation. Quantum mechanics/molecular mechanics molecular dynamics simulations determined the optimal three-dimensional positions of the flexible alkyl side chains of the SI and DPP units, which elucidates the structural cause of the molecular packing and orientation explicitly. The alkyl-chain-dependent molecular stacking significantly affected the electrical properties of the molecular films. The edge-on oriented molecules showed high hole mobilities in organic field-effect transistors, while the radially oriented molecules exhibited high photovoltaic properties in organic photovoltaic cells. These results demonstrate that appropriate positioning of alkyl side chains can modulate crystallinity and molecular orientation in SIDPP films, which ultimately have a profound impact on carrier transport and photovoltaic performance.
The performances of organic thin film transistors (OTFTs) produced by polymer solution casting are tightly correlated with the morphology and chain-ordering of semiconducting polymer layers, which depends on the processing conditions applied. The slow evaporation of a high boiling point (bp) solvent permits sufficient time for the assembly of polymer chains during the process, resulting in improving the film crystallinity and inducing favorable polymer chain orientations for charge transport. The use of high bp solvents, however, often results in de-wetting of thin films formed on hydrophobic surfaces, such as the commonly used octadecyltrichlorosilane (ODTS)-treated SiO 2 gate dielectric. De-wetting hampers the formation of uniform and highly crystalline semiconducting active channel layers. In this manuscript, we demonstrated the formation of highly crystalline dithienothienyl diketopyrrolopyrrole (TT-DPP)-based polymer films using a flow-coating method to enable the fabrication of ambipolar transistors and inverters.Importantly, unlike conventional spin-coating methods, the flow-coating method allowed us to use high bp solvents, even on a hydrophobic surface, and minimized the polymer solution waste. The crystalline orientations of the TT-DPP-based polymers were tuned depending on the solvent used (four different bp solvents were tested) and the employment of a thermal annealing step. The use of high bp solvents and thermal annealing of the polymer films significantly enhanced the crystalline microstructures in the flowcoated films, resulting in considerable carrier mobility increase in the OTFTs compared to the spin-coated films. Our simple, inexpensive, and scalable flow-coating method, for the first time employed in printing semiconducting polymers, presents a significant step toward optimizing the electrical performances of organic ambipolar transistors through organic semiconducting layer film crystallinity engineering.
One-dimensional (1D) nano/microwires have attracted significant attention as promising building blocks for various electronic and optical device applications. The integration of these elements into functional device networks with controlled alignment and density presents a significant challenge for practical device applications. Here, we demonstrated the fabrication of wafer-scale microwire field-effect transistor (FET) arrays based on well-aligned inorganic semiconductor microwires (indium-gallium-zinc-oxide (IGZO)) and organic polymeric insulator microwires fabricated via a simple and large-area evaporative assembly technique. This microwire fabrication method offers a facile approach to precisely manipulating the channel dimensions of the FETs. The resulting solution-processed monolithic IGZO microwire FETs exhibited a maximum electron mobility of 1.02 cm(2) V(-1) s(-1) and an on/off current ratio of 1 × 10(6). The appropriate choice of the polymeric microwires used to define the channel lengths enabled fine control over the threshold voltages of the devices, which were employed to fabricate high-performance depletion-load inverters. Low-voltage-operated microwire FETs were successfully fabricated on a plastic substrate using a high-capacitance ion gel gate dielectric. The microwire fabrication technique involving evaporative assembly provided a facile, effective, and reliable method for preparing flexible large-area electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.