Reliable integration of organometallic halide perovskite in photovoltaic devices is critically limited by its low stability in humid environments. Furthermore, additives to increase the mobility in the hole transport material (HTM) have deliquescence and hygroscopic properties, which attract water molecules and result in accelerated degradation of the perovskite devices. In this study, a double cantilever beam (DCB) test is used to investigate the effects of additives in the HTM layer on the perovskite layer through neatly delaminating the interface between the perovskite and HTM layers. Using the DCB test, the bottom surface of the HTM layers is directly observed, and it is found that the additives are accumulated at the bottom along the thickness (i.e., through-plane direction) of the films. It is also found that the additives significantly decrease the adhesion at the interface between the perovskite and HTM layers by more than 60% through hardening the HTM films. Finally, the adhesion-based degradation mechanism of perovskite devices according to the existence of additives is proposed for humid environments.
Introduction of polyethyleneimine (PEI) onto the perovskite layer allows HTMs to strongly adhere to the perovskite layer, simultaneously enhancing moisture stability.
The performance of planar perovskite solar cells was enhanced by using hole transporting materials containing triphenylamine groups with a multi-armed structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.