We have determined the structures of two phases of unsolvated Mg(BH(4))(2), a material of interest for hydrogen storage. One or both phases can be obtained depending on the synthesis conditions. The first, a hexagonal phase with space group P6(1), is stable below 453 K. Upon heating above that temperature it transforms to an orthorhombic phase, with space group Fddd, stable to 613 K at which point it decomposes with hydrogen release. Both phases consist of complex networks of corner-sharing tetrahedra consisting of a central Mg atom and four BH(4) units. The high-temperature orthorhombic phase has a strong antisite disorder in the a lattice direction, which can be understood on the basis of atomic structure.
[Fe(TCNE)(NCMe)2][FeCl4] is isolated from the reaction of TCNE and FeCl2(NCMe)2 and orders as a ferrimagnet below 90 K and is the initial member of a new class of magnets. It is the first metal-TCNE magnet with direct bonding between metal ion and [TCNE]*- whose structure has been determined, and it possesses a novel planar mu4-[TCNE]*- spin coupling unit bonded to four FeII's, with an axial pair of MeCNs. The [FeIIICl4]- anion occupies sites between the [FeII(TCNE*-)(NCMe)2]+ layers. [Fe(TCNE)(NCMe)2][FeCl4] has a coercive field of 1730 Oe and a remnant magnetization of 7500 emuK/mol at 50 K.
Synchrotron powder diffraction data from methylammonium tin bromide, CH(3)NH(3)SnBr(3), taken as a function of temperature, reveal the existence of a phase between 230 and 188 K crystallizing in Pmc2(1), a = 5.8941 (2), b = 8.3862 (2), c = 8.2406 (2) A. Strong ferroelectric distortions of the octahedra, associated with stereochemical activity of the Sn 5s(2) lone pair, are evident. A group analysis and decomposition of the distortion modes of the inorganic framework with respect to the cubic parent is given. The primary order parameters driving this upper transition appear to be an in-phase tilt (rotation) of the octahedra coupled to a ferroelectric mode. The precise nature of the lower-temperature phase remains uncertain, although it appears likely to be triclinic. Density-functional theory calculations on such a triclinic cell suggest that directional bonding of the amine group to the halide cage is coupled to the stereochemical activity of the Sn lone pair via the Br atoms, i.e. that the bonding from the organic component may have a strong effect on the inorganic sublattice (principally via switching the direction of the lone pair with little to no energy cost).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.