Abstract.A global vertically resolved aerosol data set covering more than 10 years of observations at more than 20 measurement sites distributed from 63 • N to 52 • S and 72 • W to 124 • E has been achieved within the Raman and polarization lidar network Polly NET . This network consists of portable, remote-controlled multiwavelength-polarization-Raman lidars (Polly) for automated and continuous 24/7 observations of clouds and aerosols. Polly NET is an independent, voluntary, and scientific network. All Polly lidars feature a standardized instrument design with different capabilities ranging from single wavelength to multiwavelength systems, and now apply unified calibration, quality control, and data analysis. The observations are processed in near-real time without manual intervention, and are presented online at polly.tropos.de. The paper gives an overview of the observations on four continents and two research vessels obtained with eight Polly systems. The specific aerosol types at these locations (mineral dust, smoke, dust-smoke and other dusty mixtures, urban haze, and volcanic ash) are identified by their Ångström exponent, lidar ratio, and depolarization ratio. The vertical aerosol distribution at the Polly NET locations is discussed on the basis of more than 55 000 automatically retrieved 30 min particle backscatter coefficient profiles at 532 nm as this operating wavelength is available for all Polly lidar systems. A seasonal analysis of measurements at selected sites revealed typical and extraordinary aerosol conditions as well as seasonal differences. These studies show the potential of Polly NET to support the establishment of a global aerosol climatology that covers the entire troposphere.
For decades lysophosphatidylcholine (LPC, lysolecithin) has been used to induce demyelination, without a clear understanding of its mechanisms. LPC is an endogenous lysophospholipid so it may cause demyelination in certain diseases. We investigated whether known receptor systems, inflammation or nonspecific lipid disruption mediates LPC-demyelination in mice. We found that LPC nonspecifically disrupted myelin lipids. LPC integrated into cellular membranes and rapidly induced cell membrane permeability; in mice, LPC injury was phenocopied by other lipid disrupting agents. Interestingly, following its injection into white matter, LPC was cleared within 24 hr but by five days there was an elevation of endogenous LPC that was not associated with damage. This elevation of LPC in the absence of injury raises the possibility that the brain has mechanisms to buffer LPC. In support, LPC injury in culture was significantly ameliorated by albumin buffering. These results shed light on the mechanisms of LPC injury and homeostasis.
Several coastal regions in Korea have suffered from hypoxia since the 1970s. We present the first review of Korean coastal hypoxia, focusing on its spatiotemporal variation, controlling factors, and effects on marine ecosystems. The review considers the two hotspots of the natural Jinhae Bay (JB) and artificial Shihwa Bay (SB), which are referred to as "Korean dead zones." The hypoxia in the JB is attributed to eutrophication due to domestic and land-used waste input and thermal stratification based on the naturally sluggish water circulation, whereas the hypoxia in the SB is due to eutrophication resulting from domestic, land-used, and industrial waste input and haline stratification as a consequence of the artificially created water stagnation. The bottom-water hypoxia and stratification has led to an imbalance in nitrogen:phosphorus ratio between surface and bottom waters. Hypoxia has also created undesirable benthic community changes in the both bays: (1) mass mortality of large species and recolonization with elevated abundances of opportunists in JB, and (2) decrease of the number of species, abundance, and diversity of benthic communities in SB. Therefore, it behooves us to pay attention to these environmental changes. This review will be helpful in determining the direction of future studies of Korean coastal hypoxia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.