Vibrotactile feedback is a very desirable feature for many touchscreen applications, creating a more engaging and effective user experience. Although it is common in small electronic devices, this feedback is often absent in large touchscreen devices because it is difficult to provide vibration sensations and control the magnitude throughout the display. Because of their long shape (over 20 cm), touch bar displays are susceptible to the same challenges that other large display types face. Thus, there is a need for a vibrotactile actuation system capable of generating a freely positionable and fully controllable point of stimulation with satisfying force output at any point of a touch bar display. This study proposes a new spring boundary condition vibrotactile system as a way to provide such feedback in touch bar interfaces. A prototype system was created using two electrostatic resonant actuators and a thin, narrow aluminum beam to study the effect of different actuator excitation parameters on the beam′s response. By varying the number of actuators excited, magnitude, excitation frequency, and signal duration, a minimum vibration of 24.5 m/s2 could be created in the beam, with the majority of the beam able to exceed 40 m/s2. These results show that a targeted vibrotactile response at a given location in the beam can be achieved and sustained. This demonstrates a promising potential for generating a freely positionable and fully controllable point of vibrotactile stimulation at any point of a touch bar display.
Vibrotactile feedback in touch screen displays (TSDs) contributes to improved usability and enhanced engagement. It is prevalent in small consumer electronic devices, such as smart phones. While vibrotactile feedback is a desirable feature for large TSDs, it is limited in such devices due to a lack of proper actuators. In this study, we propose a thin vibrotactile actuator based on an electrostatic force mechanism suitable for mounting on the back of large TSDs. The primary goals of this study are to design and test a thin or slim electrostatic resonant actuator (ERA) and investigate its feasibility for large TSD applications. A prototype ERA was constructed by employing a “leaf” spring design to reduce the thickness and to support a mass that is grounded electrically. Upon applying a high-voltage input to the prototype, the electrostatic attraction force coupled with the spring’s restoring force makes the mass to oscillate, and the maximum vibration occurs at its resonant frequency. The ERA module testing shows that the prototype produced the maximum output acceleration of 2.5 g at its resonance frequency (99 Hz), which is significantly larger than the threshold value which humans can perceive. After validating that the thin ERA can produce sufficient vibrotactile sensations, a haptic touch display module consisting of a 17-inch touch panel supported by four ERAs was constructed. To experimentally evaluate the performance of this prototype, three distant input frequencies were used, and the acceleration response of the panel was measured at multiple points. The results show that the acceleration magnitude varies, exhibiting distinct patterns throughout the panel surface, when different input frequency values were applied. The results further show that the maximum acceleration magnitude is greater than that of the human-perceivable threshold values for the input frequencies considered in this study. Overall, the results show that the proposed ERA is feasible to use in large TSDs to convey vibration tactile sensations to users while keeping the thickness of the haptic interface module thin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.