In filler loaded paper, the size of the filler affects its strength, optical and surface properties. As the size of the filler increases, tensile strength and bulk usually increases, opacity decreases, and smoothness becomes worse. Pre-flocculation of GCC (grounded calcium carbonate) makes large diameter flocs at aqueous medium that consists of multiple GCC particles, but they collapse to 2-dimensional shape in dried paper and makes low bulk paper. The hybrid calcium carbonate (HCC) that was made by in-situ CaCO 3 formation between GCC in aqueous medium made high bulk paper without harming tensile strength, bulk, opacity, and smoothness. The GCC that has equivalent size as HCC failed to make high opacity and smoothness as much as HCC.
Replacing OMG (old magazine) to ONP (old newspaper) by raising optical property through CaCO 3 in-situ precipitation method in white duplex board presents cost reduction and possible drying energy saving. The strength property impairment by the presence of CaCO 3 could be supplemented by the fiber furnish treatment or strength polymer addition. In CaCO 3 in-situ precipitation of ONP, it was found from morphological study using FlowCAM, an image analyzer, that most of calcium carbonate were formed on the fines, and made the size of the fines larger. For the case of forming calcium carbonate only on the fractionated fines, the size of the fines were the biggest, and there were more clean surface areas available for bonding for the fractionated long fibers when fractionated fibers and fines were regrouped to make paper.
Needs for high ash loading in printing paper increase as green house gas (GHG) emission regulation becomes more stricter and pressure of lowering paper production cost increases. To meet the needs, a new type of filler was developed. The mixture of ground calcium carbonate (GCC) and calcium oxide was pre-floccuated with polyelectrolyte and further treated with carbon dioxide to form new calcium carbonate between GCCs. The final products were called as hybrid calcium carbonate (HCC), and its properties were compared to the GCC and the pre-flocculated GCC. Results showed increase in tensile, smoothness, opacity, and bulk for HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.