Cement-augmented fenestrated pedicle screw fixation is becoming more popular for osteoporotic patients. Although several reports have been published on leakage-related problems with bone cement, no cases of cardiac perforation after cement-augmented pedicle screw fixation have been reported. We present a case of cardiac perforation after cement-augmented fenestrated pedicle screw fixation. A 67-year-old female was admitted to our hospital with complaints of dyspnea and chest pain after lumbar surgery. She had been treated with L4–5 lumbar interbody fusion and percutaneous pedicle screw fixation with bone cement augmentation seven days earlier for degenerative spondylolisthesis. The right chest pain was observed a day after the surgery; she was treated conservatively but it did not improve for 7 days after surgery. Chest computed tomography (CT) revealed a hemothorax and a large sharp bone cement fragment that perforated the right atrium. Bone cement can be removed with thoracotomy surgery. We have to be aware of cement leakage through the normal venous drain system around the vertebral body. We also have to consider a detailed cardiac workup, which may include chest CT or echocardiography, if a patient complains of chest pain or dyspnea after cement augmentation.
We developed new bithiophene extended electron acceptors based on m-alkoxythenyl-substituted IDIC with three different end groups, named as IDT-BT-IC, IDT-BT-IC4F, and IDT-BT-IC4Cl, respectively. The ultraviolet absorption maximum was redshifted and the bandgap was decreased as the strong electron accepting ability of the end group increased. A differential scanning calorimetry thermogram analysis revealed that all the new acceptors have a crystalline character. Using these acceptors and a bulk heterojunction structure using PBDB-T, inverted organic photovoltaic (OPV) devices were fabricated, and their performance was analyzed. Due to the red shift of the electron acceptors, the OPV active layer particularly, which was derived from IDT-BT-IC4F, exhibited increased absorption at long wavelengths over 800 nm. The OPV prepared using IDT-BT-IC exhibited a short-circuit current density (Jsc) of 2.30 mA/cm2, an open-circuit voltage (Voc) of 0.95 V, a fill factor (FF) of 45%, and a photocurrent efficiency (PCE) of 1.00%. Using IDT-BT-IC4F, the corresponding OPV device showed Jsc = 8.31 mA/cm2, Voc = 0.86 V, FF = 47%, and PCE = 3.37%. The IDT-BT-IC4Cl-derived OPV had Jsc = 3.00 mA/cm2, Voc = 0.89 V, FF = 29%, and PCE = 0.76%. When IDT-BT-IC4F was used as the electron acceptor, the highest Jsc and PCE values were achieved. The results show that the low average roughness (0.263 nm) of the active layer improves the extraction of electrons.
Organic polymer semiconductor‐based polymer solar cells (PSCs) are drawing tremendous research interest for their superior electrical, structural, optical, mechanical, and chemical properties. During the last two decades, immense efforts have been made toward the development of PSCs. Generally, poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is used as hole transport layer (HTL) of PSCs to improve hole extraction efficiency, but highly acidic PEDOT:PSS reduces device lifetime by destroying indium tin oxide (ITO) electrodes and active layers. To avoid this, some have attempted to develop inverted structured PSCs with different electron transport layers (ETLs); however, the power conversion efficiency (PCE) of these devices is limited owing to low electron mobility of their ETLs. Therefore, an attempt is made to improve the PCE of an inverted‐structured PSC by using indium gallium zinc oxide (IGZO) with optimized amount of indium (In), gallium (Ga), and zinc (Zn). Inverted PSCs with ZnO or IGZO (having various molar ratios of In, Ga, and Zn) as ETL with the structure ITO/ETL/PTB7:PC71BM/MoO3/Al are constructed. The PCE of the inverted PSC can be increased from 6.22% to 8.72% by using IGZO with an optimized weight ratio of In, Ga, and Zn as an ETL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.