We present a novel, hybrid parallel continuous collision detection (HPCCD) method that exploits the availability of multi-core CPU and GPU architectures. HPCCD is based on a bounding volume hierarchy (BVH) and selectively performs lazy reconstructions. Our method works with a wide variety of deforming models and supports selfcollision detection. HPCCD takes advantage of hybrid multi-core architectures -using the general-purpose CPUs to perform the BVH traversal and culling while GPUs are used to perform elementary tests that reduce to solving cubic equations. We propose a novel task decomposition method that leads to a lock-free parallel algorithm in the main loop of our BVH-based collision detection to create a highly scalable algorithm. By exploiting the availability of hybrid, multi-core CPU and GPU architectures, our proposed method achieves more than an order of magnitude improvement in performance using four CPU-cores and two GPUs, compared to using a single CPU-core. This improvement results in an interactive performance, up to 148 fps, for various deforming benchmarks consisting of tens or hundreds of thousand triangles.
Many binary code embedding schemes have been actively studied recently, since they can provide efficient similarity search, and compact data representations suitable for handling large scale image databases. Existing binary code embedding techniques encode high-dimensional data by using hyperplane-based hashing functions. In this paper we propose a novel hypersphere-based hashing function, spherical hashing, to map more spatially coherent data points into a binary code compared to hyperplane-based hashing functions. We also propose a new binary code distance function, spherical Hamming distance, tailored for our hypersphere-based binary coding scheme, and design an efficient iterative optimization process to achieve both balanced partitioning for each hash function and independence between hashing functions. Furthermore, we generalize spherical hashing to support various similarity measures defined by kernel functions. Our extensive experiments show that our spherical hashing technique significantly outperforms state-of-the-art techniques based on hyperplanes across various benchmarks with sizes ranging from one to 75 million of GIST, BoW and VLAD descriptors. The performance gains are consistent and large, up to 100 percent improvements over the second best method among tested methods. These results confirm the unique merits of using hyperspheres to encode proximity regions in high-dimensional spaces. Finally, our method is intuitive and easy to implement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.