In the present work, we studied thiram on silver surface by SERS. Investigations of disulfides with SERS revealed that the molecules undergo a surface reaction on silver, namely easy cleavage of the S-S bond. We believe that the two S atoms of resonance formed from the thiram may be chemisorbed strongly on Ag sol. This resonance form adheres perpendicularly to the Ag surface via the two S atoms, since the δ (CH 3 ) and ν (CN) mode perpendicular to the surface showed strong enhancement. The important roles of halide anion adsorption have been discussed and the pH effects of thiram on Ag sol in acidic, neutral, and alkaline conditions were examined.
The interaction of the antitumour agent doxorubicin with calf thymus DNA is investigated in an aqueous solution at a pH level of 6-7 with molar ratios of 1/10. A UV-resonance Raman spectroscopy and surface enhanced Raman spectroscopy are used to determine the doxorubicin binding sites and the structural variations of doxorubicin-DNA complexes in an aqueous solution. Doxorubicin intercalates with adenine and guanine via a hydrogen bond formation between the N7 positions of purine bases and the hydroxyl group of doxorubicin.
New methods were developed to prepare silver-doped sol-gel films for surface-enhanced Raman spectroscopy (SERS) applications. First, silver ions were doped into a sol-gel matrix. The doped silver ions were reduced into corresponding silver metal particles by two reductive procedures; chemical reduction and thermal reduction. The SERS spectra of benzoic acid were used to demonstrate the SERS effect of the new substrates. The adsorption strength of benzoic acid adsorbed on differently reduced substrates was discussed. The possible adsorption form and the orientation of adsorbate were also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.