Protein N -glycosylation in the endoplasmic reticulum (ER) and in the Golgi apparatus is an essential process in eukaryotic cells. Although the N -glycosylation pathway in the ER has been shown to regulate protein quality control, salt tolerance, and cellulose biosynthesis in plants, no biological roles have been linked functionally to N -glycan modifications that occur in the Golgi apparatus. Herein, we provide evidence that mutants defective in N -glycan maturation, such as complex glycan 1 ( cgl1 ), are more salt-sensitive than wild type. Salt stress caused growth inhibition, aberrant root-tip morphology, and callose accumulation in cgl1 , which were also observed in an ER oligosaccharyltransferase mutant, staurosporin and temperature sensitive 3a ( stt3a ). Unlike stt3a , cgl1 did not cause constitutive activation of the unfolded protein response. Instead, aberrant modification of the plasma membrane glycoprotein KORRIGAN 1/RADIALLY SWOLLEN 2 (KOR1/RSW2) that is necessary for cellulose biosynthesis occurred in cgl1 and stt3a . Genetic analyses identified specific interactions among rsw2 , stt3a , and cgl1 mutations, indicating that the function of KOR1/RSW2 protein depends on complex N -glycans. Furthermore, cellulose deficient rsw1-1 and rsw2-1 plants were also salt-sensitive. These results establish that plant protein N -glycosylation functions beyond protein folding in the ER and is necessary for sufficient cell-wall formation under salt stress.
More than 20 genes in the Arabidopsis genome encode proteins similar to phosphatases that act on the carboxyl-terminal domain (CTD) of RNA polymerase II. One of these CTD-phosphatase-like (CPL) proteins, CPL2, dephosphorylates CTD-Ser5-PO4 in an intact RNA polymerase II complex and contains a double-stranded (ds)-RNA-binding motif (DRM). Although the dsRNA-binding activity of CPL2 DRM has not been shown to date, T-DNA insertion mutants that express CPL2 variants lacking either a part of DRM (cpl2-1) or the entire DRM (cpl2-2) exhibited leaf expansion defects, early flowering, low fertility, and increased salt sensitivity. cpl2 mutant plants produced shorter hypocotyls than wild-type plants in the light, but were indistinguishable from wild type in the dark. CPL2 was expressed in shoot and root meristems and vasculatures, expanding rosette leaves, and floral organs suggesting a focal role for growth. Microarray and RT-PCR analyses revealed that basal levels of several auxin-responsive transcripts were reduced in cpl2. On the other hand, the levels of endogenous auxin and its conjugates were similar in wild type and cpl2. Overexpression of ARF5 but not all activator ARF transcription factors restored the auxin-responsive DR5-GUS reporter gene expression and the leaf expansion of cpl2 mutant plants but not early flowering phenotype. These results establish CPL2 as a multifunctional regulator that modulates plant growth, stress, and auxin responses.
Age-associated loss of muscle mass and function is a major cause of morbidity and mortality in the elderly adults. Muscular atrophy can also be induced by disuse associated with long-term bed rest or disease. Although miRNAs regulate muscle growth, regeneration, and aging, their potential role in acute muscle atrophy is poorly understood. Furthermore, alterations in circulating miRNA levels have been shown to occur during aging but their potential as noninvasive biomarkers for muscle atrophy remains largely unexplored. Here, we report comprehensive miRNA expression profiles by miRNA-seq analysis in tibialis anterior muscle and serum of a disuse-induced atrophy mouse model, mimicking the acute atrophy following long-term bed rest, as compared to those of young and old mice. Comparative analysis and validation studies have revealed that miR-455-3p was significantly decreased in muscle of both induced-atrophy model and old mice, whereas miR-434-3p was decreased in both serum and muscle of old mice, as compared to young mice. Furthermore, upregulation of miR-455-3p in fully differentiated C2C12 myoblasts induced a hypertrophic phenotype. These results suggest that deregulation of miR-455-3p may play a functional role in muscle atrophy and miR-434-3p could be a candidate serum biomarker of muscle aging.
Exercise has positive effects on health and improves a variety of disease conditions. An in vitro model of exercise has been developed to better understand its molecular mechanisms. While various conditions have been used to mimic in vivo exercise, no specific conditions have matched a specific type of in vivo exercise. Here, we screened various electrical pulse stimulation (EPS) conditions and compared the molecular events under each condition in myotube culture with that obtained under voluntary wheel running (VWR), a mild endurance exercise, in mice. Both EPS and VWR upregulated the mRNA levels of genes involved in the slow-type twitch ( Myh7 and Myh2) and myogenesis ( Myod and Myog) and increased the protein expression of peroxisome proliferator-activated receptor-γ coactivator-1α, which is involved in mitochondrial biogenesis. These changes were accompanied by activation of p38 and AMPK. However, neither condition induced the expression of muscle-specific E3 ligases such as MAFbx and MuRF1. Both EPS and VWR consistently induced antioxidant genes such as Sod3 and Gpx4 but did not cause similar changes in the expression levels of the calcium channel/pump-related genes Ryr and Serca. Furthermore, both EPS and VWR reduced glycogen levels but not lactate levels as assessed in post-EPS culture medium and post-VWR serum, respectively. Thus we identified an in vitro EPS condition that effectively mimics VWR in mice, which can facilitate further studies of the detailed molecular mechanisms of endurance exercise in the absence of interference from multiple tissues and organs. NEW & NOTEWORTHY This study establishes an optimal condition for electrical pulse stimulation (EPS) in myotubes that shows a similar molecular signature as voluntary wheel running. The specific EPS condition 1) upregulates the mRNA of slow-twitch muscle components and myogenic transcription factors, 2) induces antioxidant genes without any muscle damage, and 3) promotes peroxisome proliferator-activated receptor-γ coactivator-1α and its upstream regulators involved in mitochondrial biogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.