Until now, The experiment about the forage crop have been almost not conducted on the reclaimed land. Therefore, this experiment was carried out in order to know productivity of summer forage crop using slurry composting-biofilteration (SCB) liquid fertilizer on reclaimed land of Hwaong and Sukmoon in korea from 2008 to 2009. The forage crops used in this experiment were corn and sorghum×sorghum hybrid which are used as summer forage crops in South Korea. The experiment was treated with chemical fertilizer (CF), swine slurry (SS) and SCB liquid fertilizer. Dry matter (DM) yield of corn was higher than those of sorghum × sorghum hybrid in both reclaimed lands but the effect of SCB liquid fertilizer was not appeared. The neutral detergent fiber (NDF) and acid detergent fiber (ADF) contents of corn were lower than those of sorghum × sorghum hybrid. The crude protein (CP) content and in vitro dry matter digestibility (IVDMD) of corn were higher than those of sorghum × sorghum hybrid. In generally feed values of corn were higher than those of sorghum × sorghum hybrid. The results of this study showed that summer forage crop cultivation using uses SCB liquid fertilizer on reclaimed land are possible.
Thirty-five available feeds were fermented in vitro in order to investigate their soluble total organic carbon (TOCs) and methane (CH4) production rate. A fermentation reactor was designed to capture the CH4 gas emitted and to collect liquor from the reactor during in vitro fermentation. The results showed that CH4 production rate greatly varied among feeds with different ingredients. The lowest CH4-producing feeds were corn gluten feed, brewer’s grain, and orchard grass among the energy, protein, and forage feed groups, respectively. Significant differences (p<0.05) were found in digestibility, soluble total organic carbon (TOCs), and CH4 emissions among feeds, during 48 h of in vitro fermentation. Digestibility and TOCs was not found to be related due to different fermentation pattern of each but TOCs production was directly proportional to CH4 production (y = 0.0076x, r2 = 0.83). From this in vitro study, TOCs production could be used as an indirect index for estimation of CH4 emission from feed ingredients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.