A simple and rapid colorimetric method was developed to determine the lipase activity for fat splitting. Free fatty acids produced by lipase from triacylglycerols were determined by observing the color developed using cupric acetate-pyridine as a color developing reagent. This modified method requires only a few minutes to determine the free fatty acids, whereas it takes over 20 min by the conventional methods which require solvent evaporation and centrifugation steps. The sensitivity and reproducibility of the method were good for caproic, caprylic, capric, lauric, myristic, palmitic, stearic and oleic acids.
Cyanobacteria are the dominant photosynthetic prokaryotes from an ecological, economical, or evolutionary perspective, and depend on solar energy to conduct their normal life processes. However, the marked increase in solar ultraviolet radiation (UVR) caused by the continuous depletion of the stratospheric ozone shield has fueled serious concerns about the ecological consequences for all living organisms, including cyanobacteria. UV-B radiation can damage cellular DNA and several physiological and biochemical processes in cyanobacterial cells, either directly, through its interaction with certain biomolecules that absorb in the UV range, or indirectly, with the oxidative stress exerted by reactive oxygen species. However, cyanobacteria have a long history of survival on Earth, and they predate the existence of the present ozone shield. To withstand the detrimental effects of solar UVR, these prokaryotes have evolved several lines of defense and various tolerance mechanisms, including avoidance, antioxidant production, DNA repair, protein resynthesis, programmed cell death, and the synthesis of UV-absorbing/screening compounds, such as mycosporine-like amino acids (MAAs) and scytonemin. This study critically reviews the current information on the effects of UVR on several physiological and biochemical processes of cyanobacteria and the various tolerance mechanisms they have developed. Genomic insights into the biosynthesis of MAAs and scytonemin and recent advances in our understanding of the roles of exopolysaccharides and heat shock proteins in photoprotection are also discussed.
In order to study the physiological role of acetate metabolism inEscherichia coli, the growth characteristics of an E. coli W3100 pta mutant defective in phosphotransacetylase, the first enzyme of the acetate pathway, were investigated. The pta mutant grown on glucose minimal medium excreted unusual by-products such as pyruvate,d-lactate, and l-glutamate instead of acetate. In an analysis of the sequential consumption of amino acids by thepta mutant growing in tryptone broth (TB), a brief lag between the consumption of amino acids normally consumed was observed, but no such lag occurred for the wild-type strain. The ptamutant was found to grow slowly on glucose, TB, or pyruvate, but it grew normally on glycerol or succinate. The defective growth and starvation survival of the pta mutant were restored by the introduction of poly-β-hydroxybutyrate (PHB) synthesis genes (phbCAB) from Alcaligenes eutrophus, indicating that the growth defect of the pta mutant was due to a perturbation of acetyl coenzyme A (CoA) flux. By the stoichiometric analysis of the metabolic fluxes of the central metabolism, it was found that the amount of pyruvate generated from glucose transport by the phosphoenolpyruvate-dependent phosphotransferase system (PTS) exceeded the required amount of precursor metabolites downstream of pyruvate for biomass synthesis. These results suggest that E. coli excretes acetate due to the pyruvate flux from PTS and that any method which alleviates the oversupply of acetyl CoA would restore normal growth to the pta mutant.
Candida rugosa lipase solubilized in organic solvents in the presence of both surfactant and water could catalyze the hydrolysis of triglycerides, and kinetic analysis of the lipase-catalyzed reaction was found to be possible in this system. Among eight organic solvents tested, isooctane was most effective for the hydrolysis of olive oil in reversed micelles. Temperature effect, pH profile, K(m,app) and V(max,app) were determined. Among various chemical compounds, Cu(2+), Hg(2+), and Fe(3+) inhibited lipase severely. But the enzyme activity was restorable partially by adding histidine or glycine to the system containing these metal ions. The enzyme activity was dependent on R (molar ratio of water to surfactant) and maximum activity was obtained at R = 10.5. Upon addition of glycerol to the reversed micelles, lipase activity was affected in a different fashion depending on the R values. Stability of the lipase in reversed micelles was also dependent on R, and it was most stable at R = 5.5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.