Cultivated wild Panax ginseng (CWPG) has been reported to have a higher content of ginsenoside than normal Panax ginseng. This study was carried out to increase the antioxidant activity and active ingredients by the puffing process. Therefore, effects of moisture content and pressure conditions on the antioxidant activity and active ingredients of CWPG were investigated. Extraction yield and crude saponin content were decreased at all moisture contents with increasing pressure. HPLC analysis showed that the contents of ginsenoside Rg3 and compound K were increased by puffing when the pressure increased. Antioxidant properties, total phenolic content (TPC) and total flavonoid content (TFC) were increased by puffing. The correlation between color change and antioxidant activity showed the greatest correlation with the decrease of L value. It is expected that the progress of this study will play an important role in the international market of high-value-added food using CWPG.
The purpose of this study was to investigate the effects of puffing, acid, and high hydrostatic pressure (HHP) treatments on the ginsenoside profile and antioxidant capacity of mountain-cultivated Panax ginseng (MCPG) before and after treatments. Puffing and HHP treatments decreased extraction yield and increased crude saponin content. The combination of puffing and HHP treatment showed significantly higher crude saponin content than each single treatment. Puffing treatment showed the highest ginsenoside conversion compared with HHP and acid treatments. Significant ginsenoside conversion was not observed in HHP treatment but was in acid treatment. When the puffing and acid treatments were combined, Rg3 and compound K content (1.31 mg and 10.25 mg) was significantly higher than that of the control (0.13 mg and 0.16 mg) and acid treatment (0.27 mg and 0.76 mg). No synergistic effect was observed between acid and HHP treatments. In the case of functional properties, the puffing treatment showed a significant increase in TFC (29.6%), TPC (1072%), and DPPH radical scavenging capacity (2132.9%) compared to the control, while acid and HHP combined treatments did not significantly increase; therefore, the synergistic effects of HHP/puffing and acid/puffing treatments were observed in crude saponin content and ginsenoside conversion, respectively. Consequently, puffing combined with acid or HHP treatments may provide new ways to produce high-value-added MCPG with a higher content of Rg3 and compound K or crude saponin compared to untreated MCPG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.