This study presents an analysis of the nonlinearity resulting from polarization crosstalk at a polarizing beam splitter (PBS) and a wave plate (WP) in a homodyne interferometer. From a theoretical approach, a new compensation method involving a realignment of the axes of WPs to some specific angles according to the characteristics of the PBS is introduced. This method suppresses the nonlinearity in a homodyne interferometer to 0.36 nm, which would be 3.75 nm with conventional alignment methods of WPs.
This note presents a digital signal processing module for the real-time nonlinearity compensation of a homodyne interferometer. The nonlinearity is corrected by using the parameter values describing two phase-quadrature signals, through simple arithmetic calculation of the quadrature signals at specific phases, which are multiples of π/4. A field-programmable gate array was employed for the real-time implementation of a processing module since it has reconfigurable input/output and high precision synchronization. The developed module has a minimum loop time of 4.4 µs and can compensate the nonlinearity error less than ±0.5 nm, which is comparable with the elliptical fitting method. We also proved the performance of the module by examining the convergence and the stability of parameter values under various operational conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.