We searched for potential suppressors of tumor metastasis by identifying the genes that are frequently down-regulated in hepatocellular carcinomas (HCC) while being negatively correlated with clinical parameters relevant to tumor metastasis, and we report here on the identification of N-myc downstream regulated gene 2 (NDRG2) as a promising candidate. NDRG2 expression was significantly reduced in HCC compared with nontumor or normal liver tissues [87.5% (35 of 40) and 62% (62 of 100) at RNA and protein levels, respectively]. Reduction of NDRG2 expression was intimately associated with promoter hypermethylation because its promoter region was found to carry extensively methylated CpG sites in HCC cell lines and primary tumors. Immunohistochemical analysis of NDRG2 protein in 100 HCC patient tissues indicated that NDRG2 expression loss is significantly correlated with aggressive tumor behaviors such as late tumor-node-metastasis (TNM) stage (P = 0.012), differentiation grade (P = 0.024), portal vein thrombi (P = 0.011), infiltrative growth pattern (P = 0.015), nodal/distant metastasis (P = 0.027), and recurrent tumor (P = 0.021), as well as shorter patient survival rates. Ectopically expressed NDRG2 suppressed invasion and migration of a highly invasive cell line, SK-Hep-1, and experimental tumor metastasis in vivo, whereas small interfering RNA-mediated knockdown resulted in increased invasion and migration of a weakly invasive cell line, PLC/PRF/5. In addition, NDRG2 could antagonize transforming growth factor B1-mediated tumor cell invasion by specifically down-regulating the expression of matrix metalloproteinase 2 and laminin 332 pathway components, with concomitant suppression of Rho GTPase activity. These results suggest that NDRG2 can inhibit extracellular matrix-based, Rho-driven tumor cell invasion and migration and thereby play important roles in suppressing tumor metastasis in HCC.
IntroductionNatural killer (NK) cells play key roles in innate and adaptive immune responses during early host defense against infectious pathogens and tumors via 2 major mechanisms: contact-dependent cytotoxicity and cytokine production for immune modulation. [1][2][3][4] Target-cell death is primarily mediated via the granule-exocytosis pathway. NK cells are armed by functional cytotoxic granules containing perforin (Prf1) and granzymes, essential effector molecules for NK-cell cytotoxicity as shown in knockout mice, 4,5 and are triggered to mediate effector activity by receptor ligation. Prf1 facilitates the delivery of granzymes into the cytosol of the target cell, and GzmB, the best-characterized granzyme, cleaves several procaspases, BID, inhibitor of caspase-activated DNase, and other intracellular substrates to initiate the classic apoptotic pathways. [6][7][8][9] Many of the studies of Prf1 and GzmB expression in NK cells have suggested the possible involvement of posttranscriptional regulation. Recently, studies using murine NK cells have shown that acquisition of murine NK-cell cytotoxicity requires the translation of a pre-existing pool of Prf1 and GzmB mRNAs. 4 Despite high basal levels of Prf1 and GzmB mRNA, little protein expression is observed under resting conditions in many types of NK cells, whereas expression of both proteins is up-regulated during activation. 4,10,11 These observations are consistent with a posttranscriptional mechanism operating to allow NK cells to be poised for but to prevent translation before activation, such as silencing by microRNAs. 12,13 microRNAs are an abundant class of endogenous small noncoding RNAs (19-22 nt) generated by sequential processing of primary miRNA transcripts by the ribonuclease Drosha in the nucleus and Dicer1 in the cytoplasm, both of which are essential enzymes in the miRNA biogenesis pathway. In mammals, mature miRNAs are integrated into an RNA-inducing silencing complex, including Argonaute 2 (Ago2), a required endonuclease in the RNA interference pathway, and they associate with 3Ј untranslated regions (UTRs) of specific target mRNAs to down-regulate gene expression by targeting mRNAs for translational suppression or mRNA degradation. [13][14][15][16][17] The involvement of miRNA in immune responses and the development of immune cells from hematopoietic stem cells have been widely investigated by manipulation of specific miRNA levels 13,18 or by disruption of molecules involved in biogenesis and activity of all miRNAs, such as Arg, 19 Drosha, 20 and Dicer. [21][22][23][24] Recently, characterization of NK cells from mice with conditional deletion of Dicer and DiGeorge syndrome critical region 8 were reported, with evidence of impairments in NK-cell activation, survival, and function during viral infection. 24 These genetic studies have suggested miRNAs play essential roles in immune cell development and function. 13,14,25 Despite evidence for a broad impact in regulation of immune function, the molecular mechanism, importance, and biologic si...
Downregulation of the N-myc downstream-regulated gene 2 (NDRG2) gene is involved in the progression of aggressive forms of cancer, along with the poor prognosis of cancer patients. In the current study, we examined the effect of NDRG2 expression on the metastatic potential of HT1080 human fibrosarcoma and B16F10 murine melanoma cells in both in vitro and in vivo systems. In gelatin zymography, NDRG2 expression remarkably suppressed the matrix metalloproteinase (MMP)-9 activity and slightly inhibited MMP-2 activity of both cell lines. Tumor migration and invasion in vitro were significantly reduced by NDRG2 expression, and NDRG2 inhibited tumor cell proliferation in an anchorage-independent semisolid agar assay. Specifically, we found that NDRG2 affects invasion through suppression of nuclear factor kappa B (NF-kappaB) activity. In animal experiments, subcutaneously injected B16F10-NDRG2 cells showed delayed tumor growth compared with B16F10-mock cells. Furthermore, severe metastasis from primary tumor mass into the draining lymph nodes was observed after injection of B16F10-mock cells, but not with B16F10-NDRG2 cells. Pulmonary metastasis after intravenous injection of B16F10 cells was also reduced by NDRG2 expression. Intra- and peritumoral angiogenesis that is critical for the tumor growth and metastasis was clearly found in tumors after injection with B16F10-mock cells, whereas it was impaired in tumors after injection with B16F10-NDRG2 cells. Collectively, our data show that NDRG2 expression significantly suppresses tumor invasion by inhibiting MMP activities, which are regulated through the NF-kappaB signaling. Moreover, results from animal experiments provide evidence for the regulatory role of the NDRG2 gene in metastatic tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.