As a result of identifying the regulatory proteins of thioredoxin (TRX), a murine homologue for human vitamin D3 up-regulated protein 1 (VDUP1) was identified from a yeast two-hybrid screen. Cotransfection into 293 cells and precipitation assays confirmed that mouse VDUP1 (mVDUP1) bound to TRX, but it failed to bind to a Cys32 and Cys35 mutant TRX, suggesting the redox-active site is critical for binding. mVDUP1 was ubiquitously expressed in various tissues and located in the cytoplasm. Biochemical analysis showed that mVDUP1 inhibited the insulin-reducing activity of TRX. When cells were treated with various stress stimuli such as H2O2 and heat shock, mVDUP1 was significantly induced. TRX is known to interact with other proteins such as proliferation-associated gene and apoptosis signal-regulating kinase 1. Coexpression of mVDUP1 interfered with the interaction between TRX and proliferation-associated gene or TRX and ASK-1, suggesting its roles in cell proliferation and oxidative stress. To investigate the roles of mVDUP1 in oxidative stress, mVDUP1 was overexpressed in NIH 3T3 cells. When cells were exposed to stress, cell proliferation was declined with elevated apoptotic cell death compared with control cells. In addition, c-Jun N-terminal kinase activation and IL-6 expression were elevated. Taken together, these results demonstrate that mVDUP1 functions as an oxidative stress mediator by inhibiting TRX activity.
Vitamin D 3 upregulated protein 1 (VDUP1) is a 1,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ) upregulated protein, and it is induced by various stresses. In human tumor tissues, VDUP1 expression was downregulated. Upon stimulation by growth-inhibitory signals such as TGF-b1 and 1,25(OH) 2 D 3 , its expression was rapidly upregulated as the cell growth was retarded. The transfection of VDUP1 in tumor cells reduced cell growth. The VDUP1 expression was also increased when the cell-cycle progression was arrested. Transfection of VDUP1 induced cellcycle arrest at the G0/G1 phase, indicating that VDUP1 possesses a tumor-suppressive activity. In addition, it was found that VDUP1 interacted with promyelocytic leukemia zinc-finger, Fanconi anemia zinc-finger, and histone deacetylase 1, which are known to be transcriptional corepressors. VDUP1 itself suppressed IL-3 receptor and cyclin A2 promoter activity. Taken together, these results suggest that VDUP1 is a novel antitumor gene which forms a transcriptional repressor complex.
BackgroundKlotho was originally characterized as an anti-aging gene that predisposed Klotho-deficient mice to a premature aging-like syndrome. Recently, KLOTHO was reported to function as a secreted Wnt antagonist and as a tumor suppressor. Epigenetic gene silencing of secreted Wnt antagonists is considered a common event in a wide range of human malignancies. Abnormal activation of the canonical Wnt pathway due to epigenetic deregulation of Wnt antagonists is thought to play a crucial role in cervical tumorigenesis. In this study, we examined epigenetic silencing of KLOTHO in human cervical carcinoma.ResultsLoss of KLOTHO mRNA was observed in several cervical cancer cell lines and in invasive carcinoma samples, but not during the early, preinvasive phase of primary cervical tumorigenesis. KLOTHO mRNA was restored after treatment with either the DNA demethylating agent 2'-deoxy-5-azacytidine or histone deacetylase inhibitor trichostatin A. Methylation-specific PCR and bisulfite genomic sequencing analysis of the promoter region of KLOTHO revealed CpG hypermethylation in non-KLOTHO-expressing cervical cancer cell lines and in 41% (9/22) of invasive carcinoma cases. Histone deacetylation was also found to be the major epigenetic silencing mechanism for KLOTHO in the SiHa cell line. Ectopic expression of the secreted form of KLOTHO restored anti-Wnt signaling and anti-clonogenic activity in the CaSki cell line including decreased active β-catenin levels, suppression of T-cell factor/β-catenin target genes, such as c-MYC and CCND1, and inhibition of colony growth.ConclusionsEpigenetic silencing of KLOTHO may occur during the late phase of cervical tumorigenesis, and consequent functional loss of KLOTHO as the secreted Wnt antagonist may contribute to aberrant activation of the canonical Wnt pathway in cervical carcinoma.
Osteoporosis is the most common chronic metabolic bone disease. It has been estimated that more than 10 million people in the United States and 200 million men and women worldwide have osteoporosis. Given that the aging population is rapidly increasing in many countries, osteoporosis could become a global challenge with an impact on the quality of life of the affected individuals. Osteoporosis can be defined as a condition characterized by low bone density and increased risk of fractures due to the deterioration of the bone architecture. Thus, the major goal of treatment is to reduce the risk for fractures. There are several treatment options, mostly medications that can control disease progression in risk groups, such as postmenopausal women and elderly men. Recent studies on the basic molecular mechanisms and clinical implications of osteoporosis have identified novel therapeutic targets. Emerging therapies targeting novel disease mechanisms could provide powerful approaches for osteoporosis management in the future. Here, we review the etiology of osteoporosis and the molecular mechanism of bone remodeling, present current pharmacological options, and discuss emerging therapies targeting novel mechanisms, investigational treatments, and new promising therapeutic approaches.
Complement-C1q TNF-related protein 1 (CTRP1), a member of the CTRP superfamily, is expressed at high levels in adipose tissues of obese Zucker diabetic fatty (fa/fa) rats, and CTRP1 expression is induced by proinflammatory cytokines, including TNF-alpha and IL-1beta. In the present study, we investigated stimulation of aldosterone production by CTRP1, since it was observed that CTRP1 was specifically expressed in the zona glomerulosa of the adrenal cortex, where aldosterone is produced. Increased aldosterone production by CTRP1 in cells of the human adrenal cortical cell line H295R was dose-dependent. Expression levels of aldosterone synthase CYP11B2 were examined to investigate the molecular mechanisms by which CTRP1 enhances the production of aldosterone. The expression of CYP11B2 was greatly increased by treatment with CTRP1, as was the expression of the transcription factors NGFIB and NURR1, which play critical roles in stimulation of CYP11B2 gene expression. It was also revealed that angiotensin II-induced aldosterone production is, at least in part, mediated by the stimulation of CTRP1 secretion, not by the increase of CTRP1 mRNA transcription. In addition, the levels of CTRP1 were significantly up-regulated in hypertensive patients' serum. As CTRP1 was highly expressed in obese subjects as well as up-regulated in hypertensive patients, CTRP1 may be a newly identified molecular link between obesity and hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.