To evaluate the performance of a monopulse radar system, it is necessary to accurately model radar return signals from the ground surface in a time domain. In this paper, we propose a numerical method to model these return signals including radar radio frequency specifications, such as the pulse repetition interval, frequency, and polarization, as well as the antenna geometry, the ground clutter backscattering characteristics, and so on. The Doppler effect is also incorporated into the signal generation scheme because of the dynamics of the platform/clutter and the antenna orientation. The Doppler frequency shift caused by the ground clutter is modeled by employing the time correlation of the received signals. In some scenarios, the monopulse signals are generated and numerically examined. For real radar application, the effect of the platform’s roll stabilization on the monopulse signals is investigated based on the proposed signal generation scheme.
We propose a numerical scheme to simulate the time-domain echo signals at tracking radar for a realistic scenario where an EAD (expendable active decoy) and an airborne target are both in dynamic states. On various scenarios where the target takes different maneuvers, the trajectories of the EAD ejected from the target are accurately calculated by solving 6-DOF (Degreeof-Freedom) equations of the motion for the EAD. At each sampling time of the echo signal, the locations of the EAD and the target are assumed to be fixed. Thus, the echo power from the EAD can be simply calculated by using the Friis transmission formula. The returned power from the target can be computed based on the pre-calculated scattering matrix of the target. In this paper, an IPO (iterative physical optics) method is used to construct the scattering matrix database of the target. The sinc function-interpolation formulation (sampling theorem) is applied to compute the scattering at any incidence angle from the database. A simulator is developed based on the proposed scheme to estimate the echo signals, which can consider the movement of the airborne target and EAD, also the scattering of the target and the RF specifications of the EAD. For applications, we consider the detection probability of the target in the presence of the EAD based on Monte Carlo simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.