The fabrication of high-quality metallic powders has been attracted considerable attention in terms of producing advanced materials through additive manufacturing (AM) technology. The efficiency of AM products mainly dependent on the initial powder, therefore, characterisation of pre-alloyed powders become important. In this study, we explored the fabrication of Al 0.5 CoCrFeMnNi high-entropy alloy (HEA) powders by gas atomisation process and investigated their powder characteristics according to particle size distribution. X-ray diffraction results revealed the formation of major face-centred cubic and minor bodycentred cubic phase by the addition of Al content. The detailed characterisations such as scanning electron microscopy, Auger electron spectroscopy and XPS analysis was carried out to examine the chemical composition of HEA powders. The relationship between secondary dendrite arm spacing and cooling rate was evaluated. The results demonstrated that produced alloy powders are spherical in shape with smooth surfaces, compositional homogeneity, indicating the gas-atomised powders are widely acceptable for additive manufacturing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.