Sharing cross-site resources has been adopted by many recent websites in the forms of service-mashup and social network services. In this change, exploitation of the new vulnerabilities increases, which includes inserting malicious codes into the interaction points between clients and services instead of attacking the websites directly. In this paper, we present a system model to identify malicious script codes in the web contents by means of a remote verification while the web contents downloaded from multiple trusted origins are executed in a client's browser space. Our system classifies verification items according to the origin of request based on the information on the service code implementation and stores the verification results into three databases composed of white, gray, and black lists. Through the experimental evaluations, we have confirmed that our system provides clients with increased security by effectively detecting malicious scripts in the mashup web environment.
Current web has evolved to a mashed-up format according to the change of the implementation and usage patterns. Web services and user experiences have improved, however, security threats are also increased as the web contents that are not yet verified combine together. To mitigate the threats incurred as an adverse effect of the web development, we need to check security on the combined web contents. In this paper, we propose a scheduling method to detect malicious web pages not only inside but also outside through extended
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.