Identification of rare inherited variants associated with ASD and 16 new ASD risk genes d Inherited risk reveals both new biological pathways and shared PPI with known genes d We develop and validate a machine learning algorithm (ARC) to remove WGS artifacts d NR3C2 mutations define a novel syndromic form of ASD, which we model in zebrafish
The Autism Diagnostic Interview-Revised (ADI-R) is one of the most commonly used instruments for assisting in the behavioral diagnosis of autism. The exam consists of 93 questions that must be answered by a care provider within a focused session that often spans 2.5 hours. We used machine learning techniques to study the complete sets of answers to the ADI-R available at the Autism Genetic Research Exchange (AGRE) for 891 individuals diagnosed with autism and 75 individuals who did not meet the criteria for an autism diagnosis. Our analysis showed that 7 of the 93 items contained in the ADI-R were sufficient to classify autism with 99.9% statistical accuracy. We further tested the accuracy of this 7-question classifier against complete sets of answers from two independent sources, a collection of 1654 individuals with autism from the Simons Foundation and a collection of 322 individuals with autism from the Boston Autism Consortium. In both cases, our classifier performed with nearly 100% statistical accuracy, properly categorizing all but one of the individuals from these two resources who previously had been diagnosed with autism through the standard ADI-R. Our ability to measure specificity was limited by the small numbers of non-spectrum cases in the research data used, however, both real and simulated data demonstrated a range in specificity from 99% to 93.8%. With incidence rates rising, the capacity to diagnose autism quickly and effectively requires careful design of behavioral assessment methods. Ours is an initial attempt to retrospectively analyze large data repositories to derive an accurate, but significantly abbreviated approach that may be used for rapid detection and clinical prioritization of individuals likely to have an autism spectrum disorder. Such a tool could assist in streamlining the clinical diagnostic process overall, leading to faster screening and earlier treatment of individuals with autism.
Schizophrenia is a devastating neurodevelopmental disorder with a complex genetic etiology. Widespread cortical gray matter loss has been observed in patients and prodromal samples. However, it remains unresolved whether schizophrenia-associated cortical structure variations arise due to disease etiology or secondary to the illness. Here we address this question using a partitioning-based heritability analysis of genome-wide SNP and neuroimaging data from 1,750 healthy individuals. We find that schizophrenia-associated genetic variants explain a significantly enriched proportion of trait heritability in eight brain phenotypes (FDR=10%). In particular, intracranial volume (ICV) and left superior frontal gyrus thickness exhibit significant and robust associations with schizophrenia genetic risk under varying SNP selection conditions. Cross disorder comparison suggests that the neurogenetic architecture of schizophrenia-associated brain regions is, at least in part, shared with other psychiatric disorders. Our study highlights key neuroanatomical correlates of schizophrenia genetic risk in the general population. These may provide fundamental insights into the complex pathophysiology of the illness, and a potential link to neurocognitive deficits shaping the disorder.
Major depressive disorder (MDD) is a common psychiatric illness characterized by low mood and loss of interest in pleasurable activities. Despite years of effort, recent genome-wide association studies (GWAS) have identified few susceptibility variants or genes that are robustly associated with MDD. Standard single-SNP (single nucleotide polymorphism)-based GWAS analysis typically has limited power to deal with the extensive heterogeneity and substantial polygenic contribution of individually weak genetic effects underlying the pathogenesis of MDD. Here, we report an alternative, gene-set-based association analysis of MDD in an effort to identify groups of biologically related genetic variants that are involved in the same molecular function or cellular processes and exhibit a significant level of aggregated association with MDD. In particular, we used a text-mining-based data analysis to prioritize candidate gene sets implicated in MDD and conducted a multi-locus association analysis to look for enriched signals of nominally associated MDD susceptibility loci within each of the gene sets. Our primary analysis is based on the meta-analysis of three large MDD GWAS data sets (total N=4346 cases and 4430 controls). After correction for multiple testing, we found that genes involved in glutamatergic synaptic neurotransmission were significantly associated with MDD (set-based association P=6.9 × 10−4). This result is consistent with previous studies that support a role of the glutamatergic system in synaptic plasticity and MDD and support the potential utility of targeting glutamatergic neurotransmission in the treatment of MDD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.