Despite tremendous progress in chemotherapy, drug resistance remains a major challenge for anticancer treatment. The combinations of chemo-photothermal and chemo-chemo treatments have been reported to be potential solutions to overcome drug resistance. In this study, we developed a dual-in-dual synergistic therapy based on the use of dual anticancer drug-loaded graphene oxide (GO) stabilized with poloxamer 188 for generating heat and delivering drugs to kill cancer cells under near-infrared (NIR) laser irradiation. The nanocomparable system is stable and uniform in size, generating sufficient heat to induce cell death. Dual drugs (doxorubicin and irinotecan)-loaded GO (GO-DI) in combination with laser irradiation caused higher cytotoxicity than that caused by the administration of a free single drug as well as a combination of drugs and blank GO in various cancer cells, especially in MDA-MB-231 resistant breast cancer cells. Exposure to "hot" NIR and GO-DI activated the intrinsic apoptosis pathway, which was confirmed based on changes in the morphology of cell nuclei and overexpression of apoptosis-related proteins. On the basis of the results, the combined treatment showed a synergistic effect compared to the effect of chemotherapy or photothermal treatment alone, demonstrating higher therapeutic efficacy to overcome one of the most severe problem in anticancer therapy, that of intrinsic resistance to chemotherapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.