Astrictive-type grippers, which generate gripping forces from adhesive forces at the contact surface such as suction cup, are popular end-effectors as picking solutions because of their simplicity and small working space. However, the adhesive force of the astrictive gripper decreases with increasing complexity of the object surface; thus, its application has been restricted to simple picking of objects with a flat surface. Here, we present an all-round honeycomb astrictive gripper that has an orthotropic surface tension for grasping highly irregular shaped objects with an uneven surface. The design is inspired by mimicking the two-level (macro-and meso-scale) shape adaptation of the octopus's leg. The stiffness-variable structure is also consisted to change its stiffness similar to the function of octopus's leg, and owing to the combination of these structures makes possible to perform various tasks including hammering, breakfast serving, and vaccination which were not possible for previous astrictive gripper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.