Pine wilt disease is a disease that affects ecosystems by rapidly killing trees in a short period of time due to the close interaction between three factors such as trees, mediates, and pathogens. There is no 100% mortality infectious forest pests. According to the Korea Forest Service survey, as of April 2019, the damage of pine re-nematode disease was about 490,000 dead trees in 117 cities, counties and wards across the country. It's a fatal condition. In order to prevent this problem, this paper proposes a system that detects dead trees, early infection trees, and the like, using deep learning-based semantic segmentation. In addition, drones were used to photograph the area of the forest, and a separate pixel segmentation label could be used to identify three levels of transmission information: Suspicion, attention, and confirmation. This allows the user to grasp information such as area, location, and alarm to prevent the spread of re-nematode disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.