This paper demonstrates the successful printing of H13 tool steel by a selective laser melting (SLM) method at a scan laser speed of 200 mm/s for the best microstructure and mechanical behavior. Specifically, the nanoindentation strain-rate sensitivity values were 0.022, 0.019, 0.027, 0.028, and 0.035 for SLM H13 at laser scan speeds of 100, 200, 400, 800, and 1600 mm/s, respectively. This showed that the hardness increases as the strain rate increases and, practically, the hardness values of the SLM H13 at the 200 mm/s laser scan speed are the highest and least sensitive to the strain rate as compared to H13 samples at other scan speeds. The SLM processing of this material at 200 mm/s laser scan speed therefore shows the highest potential for advanced tool design. Residual stress is expected to affect the hardness and shall be investigated in future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.