Three-dimensional film images which are recently developed are seen as three-dimensional using the angle, amount, and viewing position of incident light rays. However, if the pixel contrast of the image is low or the patterns are cloudy, it does not look three-dimensional, and it is difficult to perform a quality inspection because its detection is not easy. In addition, the inspection method has not yet been developed since it is a recently developed product. To solve this problem, we propose a method to calculate the width of pixels for a specific height from the image histogram of a 3D film image and classify it based on a threshold. The proposed algorithm uses the feature that the widths of pixels by height in the image histogram of the good 3D film image are wider than the image histogram of the bad 3D film image. In the experiment, it was confirmed that the position of the height section of the image histogram has the highest classification accuracy. Through comparison tests with conventional algorithms, we showed excellent classification accuracy for 3D film image classification. We verified that it is possible with high accuracy even if the image’s contrast is low and the patterns in the image are not detected.
A 3D film pattern image was recently developed for marketing purposes, and an inspection method is needed to evaluate the quality of the pattern for mass production. However, due to its recent development, there are limited methods to inspect the 3D film pattern. The good pattern in the 3D film has a clear outline and high contrast, while the bad pattern has a blurry outline and low contrast. Due to these characteristics, it is challenging to examine the quality of the 3D film pattern. In this paper, we propose a simple algorithm that classifies the 3D film pattern as either good or bad by using the height of the histograms. Despite its simplicity, the proposed method can accurately and quickly inspect the 3D film pattern. In the experimental results, the proposed method achieved 99.09% classification accuracy with a computation time of 6.64 s, demonstrating better performance than existing algorithms.
The shear reinforcement of dual-anchorage (SRD) is used to enhance the safety of reinforced concrete structures in construction sites. In SRD, welding is used to create shear reinforcement, and after production, a quality inspection of the welding bead is required. Since the welding bead of SRD is inspected for quality by measuring both horizontal and vertical lengths, it is necessary to obtain this information for quality inspection. However, it is difficult to inspect the quality of welding beads using existing methods based on segmentation, due to the similarity in texture between the welding bead and the base material, as well as discoloration around the welded area after welding. In this paper, we propose an algorithm that detects the welding bead using an image projection algorithm for pixels and classifies the quality of the welding bead. This algorithm detects the position of welding beads using the brightness values of an image. The proposed algorithm reduces the amount of computation time by first specifying the region of interest and then performing the analysis. Results from experiments reveal that the algorithm accurately classifies welding beads into good or bad classes by obtaining all brightness values in the vertical and horizontal directions in the SRD image. Furthermore, comparison tests with conventional algorithms demonstrate that the classification accuracy of the proposed algorithm is the highest. The proposed algorithm will be helpful in the real-time welding bead inspection field where fast and accurate inspection is crucial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.