Abstract. The analytic prediction of buffer hit probability, based on the characterization of database accesses from real reference traces, is extremely useful for workload management and system capacity planning. The knowledge can be helpful for proper allocation of buffer space to various database relations, as well as for the management of buffer space for a mixed transaction and query environment. Access characterization can also be used to predict the buffer invalidation effect in a multi-node environment which, in turn, can influence transaction routing strategies. However, it is a challenge to characterize the database access pattern of a real workload reference trace in a simple manner that can easily be used to compute buffer hit probability. In this article, we use a characterization method that distinguishes three types of access patterns from a trace: (1) locality within a transaction, (2) random accesses by transactions, and (3) sequential accesses by long queries. We then propose a concise way to characterize the access skew across randomly accessed pages by logically grouping the large number of data pages into a small number of partitions such that the frequency of accessing each page within a partition can be treated as equal. Based on this approach, we present a recursive binary partitioning algorithm that can infer the access skew characterization from the buffer hit probabilities for a subset of the buffer sizes. We validate the buffer hit predictions for single and multiple node systems using production database traces. We further show that the proposed approach can predict the buffer hit probability of a composite workload from those of its component files.
This study is for design of the detention system distributed in a watershed by the Multi-Objective Genetic Algorithms(MOGAs). A new model is developed to determine optimal size and location of detention. The developed model has two primary interfaced components such as a rainfall runoff model to simulate water surface elevation(or flowrate) and MOGAs to get the optimal solution. The objective functions used in this model depend on the peak flow and storage of detention. With various constraints such as structural limitations, capacities of storage and operational targets. The developed model is applied at Gwanyang basin within Anyang watershed. The simulation results show the maximum outlet reduction is occurred at detention facilities located in upper reach of watershed in the peak discharge rates. It is also reviewed the simultaneous construction of an off-line detention and an on-line detention. The methodologies obtained from this study will be used to control the flood discharges and to reduce flood damage in urbanized watershed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.