With the evolution of cloud technology, the number of user applications is increasing, and computational workloads are becoming increasingly diverse and unpredictable. However, cloud data centers still exhibit a low I/O performance because of the scheduling policies employed, which are based on the degree of physical CPU (pCPU) occupancy. Notably, existing scheduling policies cannot guarantee good I/O performance because of the uncertainty of the extent of I/O occurrence and the lack of fine-grained workload classification. To overcome these limitations, we propose ISACS, an I/O strength-aware credit scheduler for virtualized environments. Based on the Credit2 scheduler, ISACS provides a fine-grained workload-aware scheduling technique to mitigate I/O performance degradation in virtualized environments. Further, ISACS uses the event channel mechanism in the virtualization architecture to expand the scope of the scheduling information area and measures the I/O strength of each virtual CPU (vCPU) in the run-queue. Then, ISACS allocates two types of virtual credits for all vCPUs in the run-queue to increase I/O performance and concurrently prevent CPU performance degradation. Finally, through I/O load balancing, ISACS prevents I/O-intensive vCPUs from becoming concentrated on specific cores. Our experiments show that compared with existing virtualization environments, ISACS provides a higher I/O performance with a negligible impact on CPU performance.
The development of IT technology in the 21st century has created a new paradigm for real-time, data-intensive user services, such as connected cars, smart factories, and remote health care services. The considerable computational resources required by these services are rendering the cloud increasingly more important. In the cloud server, user services are forced to share physical resources because of the emerging resource competition, thus introducing various types of unpredictable workloads. The core technology of the cloud is a virtualized system, which isolates and shares the powerful physical resources of the server in the form of a virtual machine (VM) to increase resource efficiency. However, the scheduling policy of a virtual CPU (vCPU), which is a logical CPU of a VM, generally schedules the vCPU based on the degree of occupation of the physical CPU (pCPU) without regarding I/O strength; so it brings the unfair I/O performance among VMs in the virtualized systems. The user services performing on the VM are not aware of the user-contention architectures, which sharing of I/O devices, in the virtualized systems; Furthermore, the current virtualized system simply adopts the Linux-based I/O processing process which optimized for user-contention-free architectures. Therefore, the architecture that brings the unfair usage of I/O devices among user services is hardly regarded and has low awareness in current virtualized systems. To overcome this problem, in this study, I-Balancer is presented to provide fair I/O performance among I/O-intensive user services by applying an asynchronous inter-communication control technique for the virtualized system with a high VM density. The main design goal of I-Balancer is to increase the awareness of user-contention architectures in the hypervisor. I-Balancer derives the fine-grained workload and I/O strength for each vCPU during the scheduler and event channel areas. Subsequently, to strengthen fair I/O performance, an I/O traffic control mechanism is implemented to control the inter-domain communication traffic according to the I/O strength of the VMs. The experimental results prove that I-Balancer provides a fairer network and disk I/O performance than the existing virtualized systems with negligible performance interference and overhead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.