Metallic alloy nanoparticles are synthesized by combining two or more different metals. Bimetallic or trimetallic nanoparticles are considered more effective than monometallic nanoparticles because of their synergistic characteristics. In this review, we outline the structure, synthesis method, properties, and biological applications of metallic alloy nanoparticles based on their plasmonic, catalytic, and magnetic characteristics.
The study of protein kinases has become a matter of great importance in the development of new drugs for the treatment of diseases, including cancer and inflammation. Substrate screening is the first step in the fundamental investigation of protein kinases and the development of inhibitors for use in drug discovery. Towards this goal, various studies have been reported regarding the development of phospho-peptide detection methods and the screening of phosphorylated peptide sites by protein kinases. This review introduces the detection methods for phosphorylation events using the reagents with (γ(32)P)ATP, ligand-linked ATP, phospho-peptide-specific antibodies and metal chelating compounds. Chemical modification methods using β-elimination for the detection of phospho-Ser/Thr peptides are introduced as well. In addition, the implementations of combinatorial peptide libraries for screening peptide substrates of protein kinases are discussed. The phage display approach has been suggested as an alternative method of using synthetic peptides for screening the substrate specificities of protein kinase. However, a solid phase assay using a peptide library-bound polymer resin or a peptide-arrayed glass chip is preferred for high throughput screening (HTS).
Maskless photolithographic peptide synthesis was performed on a glass chip using an automated peptide array synthesizer system. The peptide array synthesizer was built in a closed box, which contained optical and fluidic systems. The conditions for peptide synthesis were fully controlled by a computer program. For the peptide synthesis on a glass chip, 20 NVOC-protected amino acids were synthesized. The coupling efficiencies of two model peptide sequences were examined on ACA/APTS and PEG/CHI/GPTS chips. PEG/CHI/GPTS chip gave higher average stepwise yields of GIYWHHY (94%) and YIYGSFK (98%) than those of ACA/APTS chip. To quantify peptide-protein binding affinity, HPQ- or HPM-containing pentapeptides were synthesized on a PEG/CHI/GPTS chip and the binding event of Cy3 labeled-streptavidin was quantified. The peptide sequence of IQHPQ showed highest binding affinity with Cy3 labeled-streptavidin. The results demonstrated that the photolithographic peptide array synthesis method efficiently quantified the binding activities of protein-peptide interactions and it can be used for additional biological assay applications.
Exosomes are attracting attention as new biomarkers for monitoring the diagnosis and prognosis of certain diseases. Colorimetric-based lateral-flow assays have been previously used to detect exosomes, but these have the disadvantage of a high limit of detection. Here, we introduce a new technique to improve exosome detection. In our approach, highly bright multi-quantum dots embedded in silica-encapsulated nanoparticles (M–QD–SNs), which have uniform size and are brighter than single quantum dots, were applied to the lateral flow immunoassay method to sensitively detect exosomes. Anti-CD63 antibodies were introduced on the surface of the M–QD–SNs, and a lateral flow immunoassay with the M–QD–SNs was conducted to detect human foreskin fibroblast (HFF) exosomes. Exosome samples included a wide range of concentrations from 100 to 1000 exosomes/µL, and the detection limit of our newly designed system was 117.94 exosome/μL, which was 11 times lower than the previously reported limits. Additionally, exosomes were selectively detected relative to the negative controls, liposomes, and newborn calf serum, confirming that this method prevented non-specific binding. Thus, our study demonstrates that highly sensitive and quantitative exosome detection can be conducted quickly and accurately by using lateral immunochromatographic analysis with M–QD–SNs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.