Gas classification is a machine learning problem that is important for various applications including monitoring systems, health care, public security, etc. Since measuring the characteristic of gas molecules is greatly affected by external factors such as wind speed and the internal setting of detecting sensors, classification should be done by taking into account the combination of these individual factors, which we call a condition in this paper. In particular, when classifying gas data measured under multiple conditions, the data from each condition need to be integrated, which we call multi-conditioned gas classification. While there have been some studies on gas classification for a single condition, no previous approach deals with the multi-conditioned gas classification problem to the best of our knowledge. In this paper, we propose a novel multi-conditioned gas classification method for the first time. We present a new deep learning network structure that can efficiently extract features from the data of multiple conditions and effectively integrate them, which is referred to as a multi-conditioned gas classification network (MCGCN). We also propose a new training loss function to guarantee good performance reliably for the varying number of given conditions. Experimental results demonstrate the superiority of the proposed method, which achieves accuracies of 99.15% ± 0.41 regardless of the number of conditions with 15 times fewer model parameters in comparison to the existing method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.