The growth and collapse of a cavitation bubble forming within the core of a line vortex was examined experimentally to determine how the dynamics and noise emission of the elongated cavitation bubble is influenced by the underlying non-cavitating vortex properties. A steady line vortex was formed downstream of a hydrofoil mounted in the test section of a recirculating water channel. A focused pulse of laser light was used to initiate a nucleus in the core of a vortex, allowing for the detailed examination of the growth, splitting and collapse of individual cavitation bubbles as they experience a reduction and recovery of the local static pressure. Images of single-bubble dynamics were captured with two pulse-synchronized high-speed video cameras. The shape and dynamics of single vortex cavitation bubbles are compared to the original vortex properties and the local static pressure in the vortex core, and an analysis was performed to understand the relationship between the non-cavitating vortex properties and the diameter of the elongated cavitation bubble. Acoustic emissions from the bubbles were detected during growing, splitting and collapse, revealing that the acoustic impulse created during collapse was four orders of magnitude higher than the noise emission due to growth and splitting. The dynamics and noise generation of the elongated bubbles are compared to that of spherical cavitation bubbles in quiescent flow. These data indicate that the core size and circulation are insufficient to scale the developed vortex cavitation. The non-cavitating vortex circulation and core size are not sufficient to scale the bubble dynamics, even though the single-phase pressure field is uniquely scaled by these parameters. A simple analytical model of the equilibrium state of the elongated cavitation bubble suggests that there are multiple possible equilibrium values of the elongated bubble radius, each with varying tangential velocities at the bubble interface. Thus, the details of the bubble dynamics and bubble–flow interactions will set the final bubble dimensions.
The growth, oscillation and collapse of vortex cavitation bubbles are examined using both two- and three-dimensional numerical models. As the bubble changes volume within the core of the vortex, the vorticity distribution of the surrounding flow is modified, which then changes the pressures at the bubble interface. This interaction can be complex. In the case of cylindrical cavitation bubbles, the bubble radius will oscillate as the bubble grows or collapses. The period of this oscillation is of the order of the vortex time scale, τV = 2πrc/uθ, max, where rc is the vortex core radius and uθ, max is its maximum tangential velocity. However, the period, oscillation amplitude and final bubble radius are sensitive to variations in the vortex properties and the rate and magnitude of the pressure reduction or increase. The growth and collapse of three-dimensional bubbles are reminiscent of the two-dimensional bubble dynamics. But, the axial and radial growth of the vortex bubbles are often strongly coupled, especially near the axial extents of the bubble. As an initially spherical nucleus grows into an elongated bubble, it may take on complex shapes and have volume oscillations that also scale with τV. Axial flow produced at the ends of the bubble can produce local pinching and fission of the elongated bubble. Again, small changes in flow parameters can result in substantial changes to the detailed volume history of the bubbles.
The sound produced by the collapse of discrete cavitation bubbles was examined. Laser-generated cavitation bubbles were produced in both a quiescent and a vortical flow. The sound produced by the collapse of the cavitation bubbles was recorded, and its spectral content was determined. It was found that the risetime of the sound pulse produced by the collapse of single, spherical cavitation bubbles in quiescent fluid exceeded that of the slew rate of the hydrophone, which is consistent with previously published results. It was found that, as collapsing bubbles were deformed by the vortical flow, the acoustic impulse of the bubbles was reduced. Collapsing nonspherical bubbles often created a sound pulse with a risetime that exceeded that of the hydrophone slew rate, although the acoustic impulse created by the bubbles was influenced largely by the degree to which the bubbles became nonspherical before collapse. The noise produced by the slow growth of cavitation bubbles in the vortex core was not detectable. These results have implications for the interpretation of hydrodynamic cavitation noise produced by vortex cavitation.
Pairs of unequal strength, counter-rotating vortices were produced to examine the inception and dynamics of vortex cavitation as the vortices undergo a longwavelength instability. The instability causes the weaker, secondary vortex to be turned and stretched by the stronger primary vortex. Folding and stretching of the secondary vortices result in sharp reductions of the core pressure. Here, these sharp and transient reductions in the secondary vortex core pressure produced incipient cavitation at static pressures that were as much as 20 times higher than that required for inception in the core of the unstretched secondary vortex. In addition, the majority of nuclei measured was of the order of 1 lm in size, which requires tension on the order of 100 kPa for cavitation inception to occur. The flow parameters that lead to the instability and cavitation inception in the secondary vortex are examined, and the measured event rates are correlated to freestream nuclei populations and static pressure. These measurements, combined with observations of the elongated bubbles themselves, suggest that stretching produced large tensions in the core of the secondary vortex due to both a reduction in the secondary vortex core size and the creation of a jetting flow in the vortex core.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.