The generation and detection of intense terahertz (THz) radiation has drawn a great attention recently. The dramatically enhanced energy and peak electric field of the coherent THz radiation can be generated by coherent superposition of radiated fields emitted by ultrafast electron bunches. The femtosecond (fs)-THz beamline construction at the Pohang Accelerator Laboratory (PAL) was completed in the end of 2009. The fs-THz beamline at PAL can supply ultrafast and intense fs-THz radiation from a 75 MeV linear accelerator. The radiation is expected to have frequency up to 3 THz (∼100 cm(-1)) and the pulse width of <200 fs with pulse energy up to 10 μJ. This intense THz source has great potential for applications in nonlinear optical phenomena and fields such as material science, biomedical science, chemistry, and physics, etc.
Proton transfer reaction is one of the most fundamental processes in chemistry and life science. Excited state intramolecular proton transfer (ESIPT) has been studied as a model system of the proton transfer, since it can be conveniently initiated by light. We report ESIPT reaction dynamic of 1-hydroxy-anthraquione (1-HAQ) in solution by highly time-resolved fluorescence. ESIPT time of 1-HAQ is determined to be 45 ± 10 fs directly from decay of the reactant fluorescence and rise of the product fluorescence. High time resolution allows observation of the coherent vibrational wave packet motion in the excited state of the reaction product tautomer. The coherently excited vibrational mode involves large displacement of the atoms, which shortens the distance between the proton donor and the acceptor. With the theoretical analysis, we propose that the ESIPT of 1-HAQ proceeds barrierlessly with assistance of the skeletal vibration, which in turn becomes excited coherently by the ESIPT reaction.
A femtosecond (fs) terahertz (THz) linac has been constructed to generate fs-THz radiation by using ultrashort electron beam at the Pohang Accelerator Laboratory. To generate an ultrashort electron beam with 60-MeV energy, a chicane bunch compressor has been adopted. Simulation studies have been conducted to design the linac. In this note, recent achievements at 60-MeV linac are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.