The success of Transformer architecture has seen increased interest in machine translation (MT). The translation quality of neural network-based MT transcends that of translations derived using statistical methods. This growth in MT research has entailed the development of accurate automatic evaluation metrics that allow us to track the performance of MT. However, automatically evaluating and comparing MT systems is a challenging task. Several studies have shown that traditional metrics (e.g., BLEU, TER) show poor performance in capturing semantic similarity between MT outputs and human reference translations. To date, to improve performance, various evaluation metrics have been proposed using the Transformer architecture. However, a systematic and comprehensive literature review on these metrics is still missing. Therefore, it is necessary to survey the existing automatic evaluation metrics of MT to enable both established and new researchers to quickly understand the trend of MT evaluation over the past few years. In this survey, we present the trend of automatic evaluation metrics. To better understand the developments in the field, we provide the taxonomy of the automatic evaluation metrics. Then, we explain the key contributions and shortcomings of the metrics. In addition, we select the representative metrics from the taxonomy, and conduct experiments to analyze related problems. Finally, we discuss the limitation of the current automatic metric studies through the experimentation and our suggestions for further research to improve the automatic evaluation metrics.
With the growing popularity of smart speakers, such as Amazon Alexa, speech is becoming one of the most important modes of humancomputer interaction. Automatic speech recognition (ASR) is arguably the most critical component of such systems, as errors in speech recognition propagate to the downstream components and drastically degrade the user experience. A simple and effective way to improve the speech recognition accuracy is to apply automatic post-processor to the recognition result. However, training a post-processor requires parallel corpora created by human annotators, which are expensive and not scalable. To alleviate this problem, we propose Back TranScription (BTS), a denoising-based method that can create such corpora without human labor. Using a raw corpus, BTS corrupts the text using Text-to-Speech (TTS) and Speech-to-Text (STT) systems. Then, a postprocessing model can be trained to reconstruct the original text given the corrupted input. Quantitative and qualitative evaluations show that a post-processor trained using our approach is highly effective in fixing non-trivial speech recognition errors such as mishandling foreign words. We present the generated parallel corpus and post-processing platform to make our results publicly available.
Machine translation (MT) system aims to translate source language into target language. Recent studies on MT systems mainly focus on neural machine translation (NMT). One factor that significantly affects the performance of NMT is the availability of high-quality parallel corpora. However, high-quality parallel corpora concerning Korean are relatively scarce compared to those associated with other highresource languages, such as German or Italian. To address this problem, AI Hub recently released seven types of parallel corpora for Korean. In this study, we conduct an in-depth verification of the quality of corresponding parallel corpora through Linguistic Inquiry and Word Count (LIWC) and several relevant experiments. LIWC is a word-counting software program that can analyze corpora in multiple ways and extract linguistic features as a dictionary base. To the best of our knowledge, this study is the first to use LIWC to analyze parallel corpora in the field of NMT. Our findings suggest the direction of further research toward obtaining the improved quality parallel corpora through our correlation analysis in LIWC and NMT performance.
The term “Frequently asked questions” (FAQ) refers to a query that is asked repeatedly and produces a manually constructed response. It is one of the most important factors influencing customer repurchase and brand loyalty; thus, most industry domains invest heavily in it. This has led to deep-learning-based retrieval models being studied. However, training a model and creating a database specializing in each industry domain comes at a high cost, especially when using a chatbot-based conversation system, as a large amount of resources must be continuously input for the FAQ system’s maintenance. It is also difficult for small- and medium-sized companies and national institutions to build individualized training data and databases and obtain satisfactory results. As a result, based on the deep learning information retrieval module, we propose a method of returning responses to customer inquiries using only data that can be easily obtained from companies. We hybridize dense embedding and sparse embedding in this work to make it more robust in professional terms, and we propose new functions to adjust the weight ratio and scale the results returned by the two modules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.