Generally, ultrasound receive beamformers calculate the focusing time delays of fixed sound speeds in human tissue (e.g., 1540 m/s). However, phase distortions occur due to variations of sound speeds in soft tissues, resulting in degradation of image quality. Thus, an optimal estimation of sound speed is required in order to improve image quality. Implementation of real-time sound speed estimation is challenging due to high computational and hardware complexities. In this paper, an optimal sound speed estimation method with a low-cost hardware resource is presented. In the proposed method, the optimal mean sound speed is determined by measuring the amplitude variance of pre-beamformed radio-frequency (RF) data. The proposed method was evaluated with phantom and in vivo experiments, and implemented on Virtex-4 with Xilinx ISE 12.4 using VHDL. Experiment results indicate that the proposed method could estimate the mean optimal sound speed and enhance spatial resolution with a negligible increase in the hardware resource usage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.