Gold nanoparticles (AuNPs) are attractive photothermal agents for cancer therapy because they show efficient local heating upon excitation of surface plasmon oscillations. The strong absorption, efficient heat conversion, high photostability, inherent low toxicity and well-defined surface chemistry of AuNPs contribute to the growing interest in their photothermal therapy (PTT) applications. The facile tunability of gold nanostructures enables engineering of AuNPs for superior near-infrared photothermal efficacy and target selectivity, which guarantee efficient and deep tissue-penetrating PTT with mitigated concerns regarding side effects by nonspecific distributions. This article discusses the current research findings with representative near-infrared-active AuNPs, which include nanoshell, nanorod, nanocage, nanostar, nanopopcorn and nanoparticle assembly systems. AuNPs successfully demonstrate potential for use in PTT, but several hurdles to clinical applications remain, including long-term toxicity and a need for sophisticated control over biodistribution and clearance. Future research directions are discussed, especially regarding the clinical translation of AuNP photosensitizers.
Gold nanoparticles (AuNPs) have been extensively studied for photothermal cancer therapy because AuNPs can generate heat upon near-infrared irradiation. However, improving their tumor-targeting efficiency and optimizing the nanoparticle size for maximizing the photothermal effect remain challenging. We demonstrate that mesenchymal stem cells (MSCs) can aggregate pH-sensitive gold nanoparticles (PSAuNPs) in mildly acidic endosomes, target tumors, and be used for photothermal therapy. These aggregated structures had a higher cellular retention in comparison to pH-insensitive, control AuNPs (cAuNPs), which is important for the cell-based delivery process. PSAuNP-laden MSCs (MSC-PSAuNPs) injected intravenously to tumor-bearing mice show a 37-fold higher tumor-targeting efficiency (5.6% of the injected dose) and 8.3 °C higher heat generation compared to injections of cAuNPs after irradiation, which results in a significantly enhanced anticancer effect.
Recent technological advances have expanded fluorescence (FL) imaging into the second near-infrared region (NIR-II; wavelength = 1000-1700 nm), providing high spatial resolution through deep tissues. However, bright and compact fluorophores are rare in this region, and sophisticated control over NIR-II probes has not been fully achieved yet. Herein, we report an enzyme-activatable NIR-II probe that exhibits FL upon matrix metalloprotease activity in tumor microenvironment. Bright and stable PbS/CdS/ZnS core/shell/shell quantum dots (QDs) were synthesized as a model NIR-II fluorophore, and activatable modulators were attached to exploit photoexcited electron transfer (PET) quenching. The quasi type-II QD band alignment allowed rapid and effective FL modulations with the compact surface ligand modulator that contains methylene blue PET quencher. The modulator was optimized to afford full enzyme accessibility and high activation signal surge upon the enzyme activity. Using a colon cancer mouse model, the probe demonstrated selective FL activation at tumor sites with 3-fold signal enhancement in 10 min. Optical phantom experiments confirmed the advantages of the NIR-II probe over conventional dyes in the first near-infrared region.
A DNA hydrogel is reported as a delivery vehicle for gold nanorods and doxorubicin. The two photothermal and chemo cancer agents were co-loaded using electrostatic and DNA binding interactions, respectively. Light-triggered and highly synergistic combination cancer therapy was demonstrated in cellular and animal models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.