Electrocatalytic CO2 conversion into fuel is a prospective strategy for the sustainable energy production. However, still many parts of the catalyst such as low catalytic activity, selectivity, and stability are challenging. Herein, a hierarchical hexagonal Zn catalyst showed highly efficient and, more importantly, stable performance as an electrocatalyst for selectively producing CO. Moreover, we found that its high selectivity for CO is attributed to morphology. In electrochemical analysis, Zn (101) facet is favorable to CO formation whereas Zn (002) facet favors the H2 evolution during CO2 electrolysis. Indeed, DFT calculations showed that (101) facet lowers a reduction potential for CO2 to CO by more effectively stabilizing a (.) COOH intermediate than (002) facet. This further suggests that tuning the crystal structure to control (101)/(002) facet ratio of Zn can be considered as a key design principle to achieve a desirable product from Zn catalyst.
Electrocatalytic CO2 conversion into fuel is a prospective strategy for the sustainable energy production. However, still many parts of the catalyst such as low catalytic activity, selectivity, and stability are challenging. Herein, a hierarchical hexagonal Zn catalyst showed highly efficient and, more importantly, stable performance as an electrocatalyst for selectively producing CO. Moreover, we found that its high selectivity for CO is attributed to morphology. In electrochemical analysis, Zn (101) facet is favorable to CO formation whereas Zn (002) facet favors the H2 evolution during CO2 electrolysis. Indeed, DFT calculations showed that (101) facet lowers a reduction potential for CO2 to CO by more effectively stabilizing a .COOH intermediate than (002) facet. This further suggests that tuning the crystal structure to control (101)/(002) facet ratio of Zn can be considered as a key design principle to achieve a desirable product from Zn catalyst.
To achieve high performance of electrochemical CO2 reduction, a series of Cu pillar electrodes (Cu-2.5 h, Cu-5 h) were fabricated by using an electrodeposition method, and then their catalytic activities and reaction mechanisms were investigated. The series of Cu pillar electrodes exhibited improved electrocatalytic activities toward CO2 reduction to formic acid (HCOOH) as Cu pillars on electrodes developed. The Cu-5 h electrode performed well with a 28% Faradaic efficiency for formic acid at -0.5 V (vs. RHE). X-ray diffraction (XRD) analysis indicated that the enhanced catalytic activities were primarily attributable to the increased (111) facet, which is energetically favourable for the production of HCOOH. Also, ultraviolet photoelectron spectroscopy (UPS) and in situ electrochemical impedance spectroscopy (EIS) results suggested that the series of Cu pillar structure electrodes improved the electron transfer to adsorbed CO2 due to the decreased work function of the Cu pillar structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.