Pyrogallol red (PGR) presents high reactivity toward reactive (radical and nonradical) species (RS). This property of PGR, together with its characteristic spectroscopic absorption in the visible region, has allowed developing methodologies aimed at evaluating the antioxidant capacity of foods, beverages, and human fluids. These methods are based on the evaluation of the consumption of PGR induced by RS and its inhibition by antioxidants. However, at present, there are no reports regarding the degradation mechanism of PGR, limiting the extrapolation to how antioxidants behave in different systems comprising different RS. In the present study, we evaluate the kinetics of PGR consumption promoted by different RS (peroxyl radicals, peroxynitrite, nitrogen dioxide, and hypochlorite) using spectroscopic techniques and detection of product by HPLC mass spectrometry. The same pattern of oxidation and spectroscopic properties of the products is observed, independently of the RS employed. Mass analysis indicates the formation of only one product identified as a quinone derivative, excluding the formation of peroxides or hydroperoxides and/or chlorinated compounds, in agreement with FOX's assays and oxygen consumption experiments. Cyclic voltammetry, carried out at different pH's, shows an irreversible oxidation of PGR, indicating the initial formation of a phenoxy radical and a second charge transfer reaction generating an ortho-quinone derivative. Spectroelectrochemical oxidation of PGR shows oxidation products with identical UV-visible absorption properties to those observed in RS-induced oxidation.
The reaction of phenols with nitrite (nitrous acid HONO, or its conjugated base, NO2−) is of importance in stomach fluids (low pH) and in atmospheric hydrometeors (mild acid and basic pH). The initial reaction associated with the oxidation/nitration of 4‐substitued phenols promoted by HONO/NO2 depends on the pH of the solution. At low pH, the initial step involves the reaction between HONO and phenol, whereas at basic conditions this involves an electron transfer from the phenoxy anion to nitrogen dioxide (NO2) producing the nitrite anion. The rate of both processes is determined by the donor capacity of the substituent at the 4‐position of the phenol, and the data obtained at pH 2.3 follow a linear Hammett‐type correlation with a slope equal to –1.23. The partition of the gaseous intermediates (NO and NO2) makes the rate of HONO‐mediated oxidation dependent on their gas–liquid distribution. At low pH, the main process is phenol oxidation, even in oxygen‐free conditions, and the presence of any 4‐substituted phenol decreases the rate of HONO auto‐oxidation.
Abstract:In the present work we studied the reaction under gastric conditions of pyrogallol red (PGR), a polyphenolic dye, with nitrous acid (HONO). PGR has been used as a model polyphenol due to its strong UV-visible absorption and its high reactivity towards reactive species (radicals and non-radicals, RS). The reaction was followed by UV-visible spectroscopy and high performance liquid chromatography (HPLC). A clear decrease of the PGR absorbance at 465 nm was observed, evidencing an efficient bleaching of PGR by HONO. In the initial stages of the reaction, each HONO molecule nearly consumed 2.6 PGR molecules while, at long reaction times, ca. 7.0 dye molecules were consumed per each reacted HONO. This result is interpreted in terms of HONO recycling. During the PGR-HONO reaction, nitric oxide was generated in the micromolar range. In addition, the rate of PGR consumption induced by HONO was almost totally abated by argon bubbling,
OPEN ACCESSMolecules 2015, 20 10583 emphasising the role that critical volatile intermediates, such as NO and/or nitrogen dioxide (NO2), play in the bleaching of this phenolic compound.
para‐Substituted phenols in aqueous solution under anaerobic conditions readily react with nitrogen dioxide (NO2●) over a wide range of experimental conditions. The rate and rate law of the process were dependent on phenol concentration and solution pH. The kinetic order in phenol changed from one (low concentration) to zero (high concentration), a result attributable to total NO2● capture. Initial consumption rate (r0) of phenols versus pH plots showed parabolic behavior with a minimum rate at pH ca. 5. On the other hand, the maximum rate took place at high pH (pH>10) and involved the protonated phenols. The reaction rate of para‐substituted phenols with NO2● correlated with the bond dissociation energy and with Hammett's parameter. Based on such results and also supported by analysis of products carried out by HPLC‐MS/MS, our data conclusively show that, in spite of the fast acid–base interchanges of phenols and the interconversion of the different nitrogen oxides, the mechanisms of phenols nitration mediated by NO2● or HONO are clearly different.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.