Researchers worldwide are studying the environmental distribution and impacts of manufactured or environmentally fragmented small pieces of plastics, so called microplastics (<5 mm). These microplastics eventually build up in the marine environment, threatening marine ecosystems. The magnitude, fate and effects of these microplastics across the food web are largely unknown. Here, we measured digested microplastics in a top predator and critically endangered species, the NorthEast Atlantic Porbeagle shark (Lamna nasus), and compared this with general health conditions. A method for quantifying microplastics in spiral valves of porbeagle sharks was developed. Microplastics were detected in all spiral valves, up to 10.4 particles per g wet weight (w.w.) content and 9.5 particles per g w.w. tissue. This equates to individual microplastics loads as high as 3850 particles per spiral valve, most likely a result of trophic transfer. No statistically significant correlations were found between the average number of plastic particles in spiral valve content and tissue and the Condition and Hepatosomatic Index of porbeagle sharks. The results of this research show that NorthEast Atlantic porbeagle sharks ingest and digest microplastics and that there is a potential for microplastic biomonitoring using this species. More research is needed to detect possible health effects of microplastic contamination in these apex predators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.