Cytokinins affect plant immunity to various pathogens; however, the mechanisms coupling plant-derived cytokinins to pathogen responses have been elusive. Here, we found that plant-derived cytokinins promote resistance of Arabidopsis to Pseudomonas syringae pv. tomato DC3000 (Pst). Modulated cytokinin levels or signaling activity in CKX- or IPT-overexpressing plants or in ahk2 ahk3 mutants correlated with altered resistance. In fact, the cytokinin-activated transcription factor ARR2 contributes specifically to Pst resistance. The salicylic acid (SA) response factor TGA3 binds ARR2, and mutation of TGA-binding cis-elements in the Pr1 promoter abolished cytokinin- and ARR2-dependent Pr1 activation. Cytokinin treatment did not increase pathogen resistance in tga3 plants, as the cytokinin-dependent induction of Pr1 was eliminated. Moreover, SA signaling enhanced binding of ARR2/TGA3 to the Pr1 promoter. Taken together, these results show that cytokinins modulate the SA signaling to augment resistance against Pst, a process in which the interaction between TGA3 and ARR2 is important.
Highlights d Histone H1 is enriched in methylated DNA independently of methylation d H1 loss activates genes, alters nucleosome organization, and disperses heterochromatin d DNA methylation and H1 jointly silence transposons d DNA methylation suppresses intragenic antisense transcripts
SignificanceThe chromatin remodeling activities of the FACT (facilitates chromatin transactions) complex are required for many cellular functions, including transcription, DNA replication, and repair. Here, we demonstrate that the two FACT subunits, SSRP1 and SPT16, are also required for genome-wide DNA demethylation and regulation of gene imprinting during Arabidopsis reproduction. Without FACT, Arabidopsis seeds undergo abnormal development and exhibit aberrant DNA hypermethylation, including at imprinting control region loci. We show that FACT associates with the DEMETER (DME) DNA demethylase, facilitating DNA demethylation at over half of DME’s targets, specifically those which reside in heterochromatin. These results provide insight into upstream events in the DNA demethylation pathway and reveal the importance of chromatin remodeling for DNA demethylation during Arabidopsis reproduction.
Stomata play an important role in preinvasive defense responses by limiting pathogen entry into leaves. Although the stress hormones salicylic acid (SA) and abscisic acid (ABA) are known to regulate stomatal immunity, the role of growth promoting hormones is far from understood. Here, we show that in Arabidopsis thaliana, cytokinins (CKs) function in stomatal defense responses. The cytokinin receptor HISTIDINE KINASE3 (AHK3) and RESPONSE REGULATOR2 (ARR2) promote stomatal closure triggered by pathogen-associated molecular pattern (PAMP) and resistance to Pseudomonas syringae pv tomato bacteria. Importantly, the cytokinin trans-zeatin induces stomatal closure and accumulation of reactive oxygen species (ROS) in guard cells through AHK3 and ARR2 in an SA-dependent and ABA-independent manner. Using pharmacological and reverse genetics approaches, we found that CK-mediated stomatal responses involve the apoplastic peroxidases PRX4, PRX33, PRX34, and PRX71, but not the NADPH oxidases RBOHD and RBOHF. Moreover, ARR2 directly activates the expression of PRX33 and PRX34, which are required for SA-and PAMP-triggered ROS production. Thus, the CK signaling pathway regulates ROS homeostasis in guard cells, which leads to enhanced stomatal immunity and plant resistance to bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.