Peptoids are versatile peptidomimetic molecules with wide‐ranging applications from drug discovery to materials science. An understanding of peptoid sequence features that contribute to both their three‐dimensional structures and their interactions with lipids will expand functions of peptoids in varied fields. Furthermore, these topics capture the enthusiasm of undergraduate students who prepare and study diverse peptoids in laboratory coursework and/or in faculty led research. Here, we present the synthesis and study of 21 peptoids with varied functionality, including 19 tripeptoids and 2 longer oligomers. We observed differences in fluorescence spectral features for 10 of the tripeptoids that correlated with peptoid flexibility and relative positioning of chromophores. Interactions of representative peptoids with sonicated glycerophospholipid vesicles were also evaluated using fluorescence spectroscopy. We observed evidence of conformational changes effected by lipids for select peptoids. We also summarize our experiences engaging students in peptoid‐based projects to advance both research and undergraduate educational objectives in parallel.
Atom transfer radical coupling (ATRC), performed with or without radical traps, has allowed for high extents of coupling (Xc) for a variety of brominated polymers, yet structurally different polymeric chain ends require unique reagents and reaction conditions. Inspired by a similar study that focused on universal conditions for the controlled polymerization of different monomers using atom transfer radical polymerization (ATRP), this work focuses on developing a single set of conditions (or conditions with as little variation as possible) that will achieve extents of coupling greater than 80% or end-brominated chains of polystyrene (PSBr), poly(methyl methacrylate) (PMMABr), and poly(methyl acrylate) (PMABr). The radical traps α-phenyl-tert-butylnitrone (PBN), 2-methyl-2-nitrosopropane (MNP), and nitrosobenzene (NBz) were chosen in this study, along with copper catalysts, reducing agents, and nitrogen-based ligands. Ultimately, a single set of effective reaction conditions was identified with the only difference being the radical trap used: MNP was effective for coupling PSBr and PMABr while NBz was necessary to achieve similarly high extents of coupling for PMMABr.
Monobrominated versions of poly(pentafluorostyrene) (PPFSBr), polystyrene (PSBr), and poly(methyl acrylate) (PMABr) are prepared by atom transfer radical polymerization (ATRP) and employed in a variety of atom transfer radical coupling (ATRC)‐type reactions to observe the impact of external aromatic faces on the extent of coupling (Xc). In ATRC reactions assisted with the radical trap 2‐methyl‐2‐nitrosopropane (MNP), Xc is nearly unchanged when the electron‐rich benzene co‐solvent (50% v/v with THF) is replaced with the electron‐poor hexafluorobenzene (HFB) for PSBr and PMABr. In the case of PPFSBr, the addition of benzene to the reaction mixture results in far lower extents of coupling (Xc < 0.2). 1H NMR spectra of the radical trap MNP in HFB show greater aggregation to the inactive form, compared to the spectra obtained in benzene. To remove the effect of the radical trap interacting with the aromatic co‐solvent and altering the rate of coupling, traditional ATRC reactions are performed with the same co‐solvent systems and, in this case, HFB results in higher Xc values across all polymer types. This is consistent with HFB pushing the position of the KATRP further toward the active radical, while benzene increases the reactivity of the MNP radical trap.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.