-This paper presents the optimal scheduling of hourly consumption in a residential community (community, neighborhood, etc.) based on real-time electricity price. The residential community encompasses individual residential loads, communal (shared) loads, and local generation. Community-aggregated loads, which include residential and communal loads, are modeled as fixed, adjustable, shiftable, and storage loads. The objective of the optimal load scheduling problem is to minimize the community-aggregated electricity payment considering the convenience of individual residents and hourly community load characteristics. Limitations are included on the hourly utility load (defined as community-aggregated load minus the local generation) that is imported from the utility grid. Lagrangian relaxation (LR) is applied to decouple the utility constraint and provide tractable subproblems. The decomposed subproblems are formulated as mixed-integer programming (MIP) problems. The proposed model would be used by community master controllers to optimize the utility load schedule and minimize the community-aggregated electricity payment. Illustrative optimal load scheduling examples of a single resident as well as an aggregated community including 200 residents are presented to show the efficiency of the proposed method based on real-time electricity price.
Keywords
-Application of residential demand response (DR) programs are currently realized up to a limited extent due to customers' difficulty in manually responding to the time-differentiated prices. As a solution, this paper proposes an automatic home load management (HLM) framework to achieve the household minimum payment as well as meet the operational constraints to provide customer's comfort. The projected HLM method controls on/off statuses of responsive appliances and the charging/discharging periods of plug-in hybrid electric vehicle (PHEV) and battery storage at home. This paper also studies the impacts of different time-varying tariffs, i.e., time of use (TOU), real time pricing (RTP), and inclining block rate (IBR), on the home load management (HLM). The study is effectuated in a smart home with electrical appliances, a PHEV, and a storage system. The simulation results are presented to demonstrate the effectiveness of the proposed HLM program. Peak of household load demand along with the customer payment costs are reported as the consequence of applying different pricings models in HLM.
-This paper presents an application of time series analysis in hourly wind speed simulation and forecast in Jeju Island, Korea. Autoregressive -moving average (ARMA) model, which is well in description of random data characteristics, is used to analyze historical wind speed data (from year of 2010 to 2012). The ARMA model requires stationary variables of data is satisfied by power law transformation and standardization. In this study, the autocorrelation analysis, Bayesian information criterion and general least squares algorithm is implemented to identify and estimate parameters of wind speed model. The ARMA (2,1) models, fitted to the wind speed data, simulate reference year and forecast hourly wind speed in Jeju Island.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.