Recently, analysis techniques to extract new meanings using big data analysis and various services using them have been developed. A disaster safety service among such services has been paid attention as the most important service. In this paper, we design and implement a flood disaster safety system using real time weather big data. The proposed system retrieves and processes vast amounts of information being collected in real time. In addition, it analyzes risk factors by aggregating the collected real time and past data and then provides users with prediction information. The proposed system also provides users with the risk prediction information by processing real time data such as user messages and news, and by analyzing disaster risk factors such a typhoon and a flood. As a result, users can prepare for potential disaster safety risks through the proposed system.
The analysis method using Big Data has evolved based on the Big data Management Technology.There are quite a few researching institutions anticipating new era in data analysis using Big Data and IT vendors has been sided with them launching standardized technologies for Big Data management technologies. Big Data is also affected by improvements of IT gadgets IT environment.Foreran by social media, analyzing method of unstructured data is being developed focusing on diversity of analyzing method, anticipation and optimization. In the past, data analyzing methods were confined to the optimization of structured data through data mining, OLAP, statics analysis. This data analysis was solely used for decision making for Chief Officers. In the new era of data analysis, however, are evolutions in various aspects of technologies; the diversity in analyzing method using new paradigm and the new data analysis experts and so forth. In addition, new patterns of data analysis will be found with the development of high performance computing environment and Big Data management techniques. Accordingly, this paper is dedicated to define the possible analyzing method of social media using Big Data. this paper is proposed practical use analysis for social media analysis through data mining analysis methodology.
In wireless sensor networks, a moving object tracking scheme is one of core technologies for real applications such as environment monitering and enemy moving tracking in military areas. However, no works have been carried out on processing the failure of object tracking in sparse sensor networks with holes. Therefore, the energy consumption in the existing schemes significantly increases due to plenty of failures of moving object tracking. To overcome this problem, we propose a novel moving object tracking scheme based on polynomial regression prediction in sparse sensor networks. The proposed scheme activates the minimum sensor nodes by predicting the trajectory of an object based on polynomial regression analysis. Moreover, in the case of the failure of moving object tracking, it just activates only the boundary nodes of a hole for failure recovery. By doing so, the proposed scheme reduces the energy consumption and ensures the high accuracy for object tracking in the sensor network with holes. To show the superiority of our proposed scheme, we compare it with the existing scheme. Our experimental results show that our proposed scheme reduces about 47% energy consumption for object tracking over the existing scheme and achieves about 91% accuracy of object tracking even in sensor networks with holes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.