Summary Polycomb Group (PcG) proteins play an essential role in the epigenetic maintenance of repressive chromatin states. The gene silencing activity of the Polycomb Repressive Complex 2 (PRC2) depends on its ability to tri-methylate lysine 27 of histone H3 (H3K27) via the catalytic SET domain of the EZH2 subunit, and at least two other subunits of the complex: Suz12 and Eed. We show that the C-terminal domain of Eed specifically binds to histone tails carrying tri-methyl lysine residues associated with repressive chromatin marks and that this leads to the allosteric activation of the methyltransferase activity of PRC2. Mutations in Eed that prevent it from recognising repressive trimethyl-lysine marks abolish activation of PRC2 in vitro and, in Drosophila, reduces global methylation and disrupts development. These findings suggest a model for the propagation of the H3K27me3 mark that accounts for the maintenance of repressive chromatin domains and for the transmission of a histone modification from mother to daughter cells.
SUMMARY Mononucleosomes, the basic building blocks of chromatin, contain two copies of each core histone. The associated posttranslational modifications regulate essential chromatin-dependent processes, yet whether each histone copy is identically modified in vivo is unclear. We demonstrate that nucleosomes in embryonic stem cells, fibroblasts, and cancer cells exist in both symmetrically and asymmetrically modified populations for histone H3 lysine 27 di/trimethylation (H3K27me2/3) and H4K20me1. To explore implications of nucleosomal asymmetry, we analyzed co-occurrence of histone marks and obtained direct physical evidence for bivalent nucleosomes carrying H3K4me3 or H3K36me3 along with H3K27me3, albeit on opposite H3 tails. Bivalency at target genes was resolved upon differentiation of ES cells. Polycomb Repressive Complex 2-mediated methylation of H3K27 was inhibited when nucleosomes contain symmetrically, but not asymmetrically, placed H3K4me3 or H3K36me3. These findings uncover a potential mechanism for the incorporation of bivalent features into nucleosomes and demonstrate how asymmetry might set the stage to diversify functional nucleosome states.
Ezh2 functions as a histone H3 Lys 27 (H3K27) methyltransferase when comprising the Polycomb-Repressive Complex 2 (PRC2). Trimethylation of H3K27 (H3K27me3) correlates with transcriptionally repressed chromatin. The means by which PRC2 targets specific chromatin regions is currently unclear, but noncoding RNAs (ncRNAs) have been shown to interact with PRC2 and may facilitate its recruitment to some target genes. Here we show that Ezh2 interacts with HOTAIR and Xist. Ezh2 is phosphorylated by cyclin-dependent kinase 1 (CDK1) at threonine residues 345 and 487 in a cell cycle-dependent manner. A phospho-mimic at residue 345 increased HOTAIR ncRNA binding to Ezh2, while the phospho-mimic at residue 487 was ineffectual. An Ezh2 domain comprising T345 was found to be important for binding to HOTAIR and the 5′ end of Xist.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.