The stress placed on global power supply systems by the growing demand for electricity has been steadily increasing in recent years. Thus, accurate forecasting of energy demand and consumption is essential to maintain the lifestyle and economic standards of nations sustainably. However, multiple factors, including climate change, affect the energy demands of local, national, and global power grids. Therefore, effective analysis of multivariable data is required for the accurate estimation of energy demand and consumption. In this context, some studies have suggested that LSTM and CNN models can be used to model electricity demand accurately. However, existing works have utilized training based on either electricity loads and weather observations or national metrics e.g., gross domestic product, imports, and exports. This binary segregation has degraded forecasting performance. To resolve this shortcoming, we propose a CNN-LSTM model based on a multivariable augmentation approach. Based on previous studies, we adopt 1D convolution and pooling to extract undiscovered features from temporal sequences. LSTM outperforms RNN on vanishing gradient problems while retaining its benefits regarding time-series variables. The proposed model exhibits near-perfect forecasting of electricity consumption, outperforming existing models. Further, state-level analysis and training are performed, demonstrating the utility of the proposed methodology in forecasting regional energy consumption. The proposed model outperforms other models in most areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.