This study aimed to understand the effect of heat accumulation on microstructure formation on STS 316L during multilayer deposition by a laser metal deposition (LMD) process and to predict the microstructure morphology. A comprehensive experimental and numerical study was conducted to quantify the solidification parameters (temperature gradient (G) and growth rate (R)) in the LMD multilayer deposition process. During deposition, the temperature profile at a fixed point in the deposit was measured to validate the numerical model, and then the solidification parameters were quantified using the model. Simultaneously, the microstructure of the deposit was investigated to confirm the microstructure morphology. Then, a relationship between the microstructure morphology and the G/R was proposed using a solidification map. The findings of this study can guide the design of scanning paths to produce deposits with a uniform structure.
This study aimed to suggest a solidification map based on the solidification parameters G and R of each layer in the multilayer deposition for the investigation of heat accumulation on the deposit. Through the solidification map, the appropriate solidification conditions of the microstructure were determined. In order to investigate the solidification parameters, the temperature profile of the deposit was experimentally acquired during deposition. A simulation model reflecting the characteristics of the deposition process was developed and verified. The solidification parameters from the simulation model and the microstructure from experiments were correlated. Based on the analysis, a solidification map of 316L SS processed with CMT-WAAM process was derived, which is suggested as a guide for controlling and predicting the morphology of the microstructure in the deposit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.