This study addresses the automatic multi‐person tracking problem in complex scenes from a single, static, uncalibrated camera. In contrast with offline tracking approaches, a novel online multi‐person tracking method is proposed based on a sequential tracking‐by‐detection framework, which can be applied to real‐time applications. A two‐stage data association is first developed to handle the drifting targets stemming from occlusions and people's abrupt motion changes. Subsequently, a novel online appearance learning is developed by using the incremental/decremental support vector machine with an adaptive training sample collection strategy to ensure reliable data association and rapid learning. Experimental results show the effectiveness and robustness of the proposed method while demonstrating its compatibility with real‐time applications.
This paper addresses the problem of multi-object tracking in complex scenes by a single, static, uncalibrated camera. Tracking-by-detection is a widely used approach for multi-object tracking. Challenges still remain in complex scenes, however, when this approach has to deal with occlusions, unreliable detections (e.g., inaccurate position/size, false positives, or false negatives), and sudden object motion/appearance changes, among other issues. To handle these problems, this paper presents a novel online multi-object tracking method, which can be fully applied to real-time applications. First, an object tracking process based on frame-by-frame association with a novel affinity model and an appearance update that does not rely on online learning is proposed to effectively and rapidly assign detections to tracks. Second, a two-stage drift handling method with novel track confidence is proposed to correct drifting tracks caused by the abrupt motion change of objects under occlusion and prolonged inaccurate detections. In addition, a fragmentation handling method based on a track-to-track association is proposed to solve the problem in which an object trajectory is broken into several tracks due to long-term occlusions. Based on experimental results derived from challenging public data sets, the proposed method delivers an impressive performance compared with other state-of-the-art methods. Furthermore, additional performance analysis demonstrates the effect and usefulness of each component of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.