The prevalence of intracranial complications of acute coalescent mastoiditis in children has decreased significantly; however, this clinical problem persists, with a relatively high mortality. The common practice for management of acute mastoiditis with epidural abscess is mastoidectomy, drainage and placement of a ventilation tube, which means that the main pathology is confined to the mastoid cavity. We suggest that tympanic exploration is mandatory in certain cases, an example of which we present here. We report one case of acute mastoiditis with epidural abscess, in which mastoidectomy with tympanic exploration was needed to ensure drainage throughout the cavities and to prevent pressure rebuilding in the mastoid and tympanic cavities. We stress that if the tympanic membrane is thickened and no fluid is drained when placing a pressure equalization tube, there could be granulation tissue in the tympanum and tympanic exploration is mandatory, especially in a case of acute mastoiditis with intracranial complications accompanied by prolonged symptoms.
Prevalent construction of impermeable pavements in urban areas causes diverse water-related environmental issues, such as lowering ground water levels and shortage of water supply for the living. In order to resolve such problems, a rainwater reservoir can be an effective and useful solution. The rainwater reservoir facilitates the hydrologic cycle in urban areas by temporarily retaining precipitation-runoff within a shallow subsurface layer for later use in a dry season. However, in order to use the stored water of precipitation-runoff, non-point source pollutants mostly retained in initial rainfall should be removed before being stored in the reservoir. Therefore, the purification system to filter out the non-point source pollutants is essential for the rainwater reservoir. The conventional soil filtration technology is well known to be able to capture non-point source pollutants in a economical and efficient way. This study adopted a sand filter layer (SFL) as a non-point source pollutant removal system in the rainwater reservoir, and conducted a series of lab-scale chamber tests and field tests to evaluate the pollutant removal efficiency and applicability of SFL. During the laboratory chamber experiments, three types of SFL with the different grain size characteristics were compared in the chamber with a dimension of 20cm×30cm×60cm. To evaluate performance of the reservoir systems, the concentration of the polluted water in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) were measured and compared. In addition, a reduction in hydraulic conductivity of SFL due to pollutant clogging was indirectly estimated. The optimum SFL selected through the laboratory chamber experiments was verified on the in-situ rainwater reservoir for field applicability.
An artificial rainwater reservoir installed in urban areas for recycling rainwater is an eco-friendly facility for reducing storm water effluence. However, in order to recycle the rainwater directly, the artificial rainwater reservoir requires an auxiliary system that can remove non-point source pollutants included in the initial rainfall of urban area. Therefore, the conventional soil filtration technology is adopted to capture non-point source pollutants in an economical and efficient way in the purification system of artificial rainwater reservoirs. In order to satisfy such a demand, clogging characteristics of the sand filter layers with different grain-size distributions were studied with real non-point source pollutants. For this, a series of lab-scale chamber tests were conducted to make a prediction model for removal of non-point source pollutants, based on the clogging theory. The laboratory chamber experiments were carried out by permeating two types of artificially contaminated water through five different types of sand filter layers with different grain-size distributions.The two artificial contaminated waters were made by fine marine-clay particles and real non-point source pollutants collected from motorcar roads of Seoul, Korea. In the laboratory chamber experiments, the concentrations of the artificial contaminated water were measured in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) and compared with each other to evaluate the performance of sand filter layers. In addition, the accumulated weight of pollutant particles clogged in the sand filter layers was estimated. This paper suggests a prediction model for removal of non-point source pollutants with theoretical consideration of the physical characteristics such as the grain-size distribution and composition, and change in the hydraulic conductivity and porosity of sand filter layers. The lumped parameter related with the clogging property was estimated by comparing the accumulated weight of pollutant particles obtained from the laboratory chamber experiments and calculated from the prediction model based on the clogging theory.It is found that the lumped parameter has a significant influence on the amount of the pollutant particles clogged
Clogging characteristics of conventional sand filter layers with different grain-size distributions were experimentally studied to estimate their filtration capacity to capture non-point source pollutants in an artificial rainwater reservoir. A series of laboratory-scale chamber tests was conducted for artificial urban runoff synthesized with non-point source pollutants collected from a real road in Seoul, Korea. In addition, an analytical filtration model for estimating removal of non-point source pollutants was adopted considering the clogging characteristics. To evaluate the performance of three types of sand filter layers with different grain size characteristics, the pollutant concentration was measured in terms of total suspended solids and chemical oxygen demand. The lumped parameter (θ) related to the clogging property was estimated by comparing the accumulated weight of pollutant particles obtained from the laboratory chamber experiments and the theoretical estimation from the analytical filtration model. Based on the experimental study and theoretical consideration, a double-sand-filter layer consisting of two separate layers is proposed as the optimum system for removing non-point source pollutants in the pilot-scale rainwater reservoir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.