Amorphous small-molecule organic materials are utilized in organic light emitting diodes (OLEDs), with device performance relying on appropriate chemical design. Due to the vast number of contending materials, a symbiotic experimental and simulation approach would be greatly beneficial in linking chemical structure to macroscopic material properties. We review simulation approaches proposed for predicting macroscopic properties. We then present a library of OLED hosts, containing input files, results of simulations, and experimentally measured references of quantities relevant to OLED materials. We find that there is a linear proportionality between simulated and measured glass transition temperatures, despite a quantitative disagreement. Computed ionization energies are in excellent agreement with the ultraviolet photoelectron and photoemission spectroscopy in air measurements. We also observe a linear correlation between calculated electron affinities and ionization energies and cyclic voltammetry measurements. Computed energetic disorder correlates well with thermally stimulated luminescence measurements and charge mobilities agree remarkably well with space charge–limited current measurements. For the studied host materials, we find that the energetic disorder has the greatest impact on the charge carrier mobility. Our library helps to swiftly evaluate properties of new OLED materials by providing well-defined structural building blocks. The library is public and open for improvements. We envision the library expanding and the workflow providing guidance for future OLED material design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.