In this study we developed a dual therapeutic metal ion-releasing nanoparticle for advanced osteogenic differentiation of stem cells. In order to enhance the osteogenic differentiation of human mesenchymal stem cells (hMSCs) and induce angiogenesis, zinc (Zn) and iron (Fe) were synthesized together into a nanoparticle with a pH-sensitive degradation property. Zn and Fe were loaded within the nanoparticles to promote early osteogenic gene expression and to induce angiogenic paracrine factor secretion for hMSCs. In vitro studies revealed that treating an optimized concentration of our zinc-based iron oxide nanoparticles to hMSCs delivered Zn and Fe ion in a controlled release manner and supported osteogenic gene expression (RUNX2 and alkaline phosphatase) with improved vascular endothelial growth factor secretion. Simultaneous intracellular release of Zn and Fe ions through the endocytosis of the nanoparticles further modulated the mild reactive oxygen species generation level in hMSCs without cytotoxicity and thus improved the osteogenic capacity of the stem cells. Current results suggest that our dual ion releasing nanoparticles might provide a promising platform for future biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.