Abstract-Atmospheric-pressure plasmas are used in a variety of materials processes. Traditional sources include transferred arcs, plasma torches, corona discharges, and dielectric barrier discharges. In arcs and torches, the electron and neutral temperatures exceed 3000 C and the densities of charge species range from 10 16 -10 19 cm 03 . Due to the high gas temperature, these plasmas are used primarily in metallurgy. Corona and dielectric barrier discharges produce nonequilibrium plasmas with gas temperatures between 50-400 C and densities of charged species typical of weakly ionized gases. However, since these discharges are nonuniform, their use in materials processing is limited. Recently, an atmospheric-pressure plasma jet has been developed, which exhibits many characteristics of a conventional, low-pressure glow discharge. In the jet, the gas temperature ranges from 25-200 C, charged-particle densities are 10 11 -10 12 cm 03 , and reactive species are present in high concentrations, i.e., 10-100 ppm. Since this source may be scaled to treat large areas, it could be used in applications which have been restricted to vacuum. In this paper, the physics and chemistry of the plasma jet and other atmospheric-pressure sources are reviewed.Index Terms-Atmospheric pressure, corona discharge, dielectric barrier discharge, plasma jet, plasma torch, thermal and nonthermal plasmas, transferred arc.
An atmospheric pressure plasma source operated by radio frequency power has been developed. This source produces a unique discharge that is volumetric and homogeneous at atmospheric pressure with a gas temperature below 300°C. It also produces a large quantity of oxygen atoms, ϳ5ϫ10 15 cm Ϫ3 , which has important value for materials applications. A theoretical model shows electron densities of 0.2-2ϫ10 11 cm Ϫ3 and characteristic electron energies of 2-4 eV for helium discharges at a power level of 3-30 W cm Ϫ3 .
The reaction chemistry in the afterglow of a non-equilibrium, capacitive discharge, operated at 600 Torr total pressure with (0.5 to 5.0) × 10 17 cm -3 of oxygen in helium, has been examined by ultraviolet absorption spectroscopy, optical emission spectroscopy, and numerical modeling. The densities of the active species,and O 3 , have been determined as a function of the operating conditions. At RF power densities between 6.1 and 30.5 W/cm 3 and a neutral temperature of 100 ( 40°C, the plasma generated (0.2 to 1.0) × 10 16 cm -3 of O( 3 P) and O 2 ( 1 ∆ g ), (0.2 to 2.0) × 10 15 cm -3 of O 2 ( 1 Σ g + ), and (0.1 to 4.0) × 10 15 cm -3 of O 3 . After the power was turned off, the singlet-sigma and singlet-delta states decayed within 0.1 and 30.0 ms, respectively. The concentration of oxygen atoms remained constant for about 0.5 ms, then fell rapidly due to recombination with O 2 to form O 3 . It was found that the etching rate of polyimide correlated with the concentration of oxygen atoms in the afterglow, indicating that the O atoms were the active species involved in this process.
Discharge phenomena of a nonthermal atmospheric pressure plasma source have been studied. An atmospheric pressure plasma jet (APPJ) operates using rf power and produces a stable homogeneous discharge at atmospheric pressure. After breakdown, the APPJ operation is divided into two regimes, a “normal” operating mode when the discharge is stable and homogeneous, and a “failure” mode when the discharge converts into a filamentary arc. Current and voltage (I–V) characteristics and spatially resolved emission intensity profiles have been measured during the normal operating mode. These measurements show that the APPJ produces an alpha (α) mode rf capacitive discharge. Based upon a dimensional analysis using the observed I–V characteristics, a rough estimate is made for plasma density of 3×1011 cm−3 and an electron temperature of 2 eV. In addition, the gas temperature of 120 °C has been spectroscopically measured inside the discharge. These plasma parameters indicate that the APPJ shows promise for various materials applications as it can produce substantial amounts of reactive species and avoid thermal damages, while having the advantage of atmospheric pressure operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.