This paper presents a new framework to classify floor plan elements and represent them in a vector format. Unlike existing approaches using image-based learning frameworks as the first step to segment the image pixels, we first convert the input floor plan image into vector data and utilize a graph neural network. Our framework consists of three steps. (1) image pre-processing and vectorization of the floor plan image; (2) region adjacency graph conversion; and (3) the graph neural network on converted floor plan graphs. Our approach is able to capture different types of indoor elements including basic elements, such as walls, doors, and symbols, as well as spatial elements, such as rooms and corridors. In addition, the proposed method can also detect element shapes. Experimental results show that our framework can classify indoor elements with an F1 score of 95%, with scale and rotation invariance. Furthermore, we propose a new graph neural network model that takes the distance between nodes into account, which is a valuable feature of spatial network data.
This paper presents a new framework to classify floor plan elements and represent them in a vector format. Unlike existing approaches using image-based learning frameworks as the first step to segment the image pixels, we first convert the input floor plan image into vector data and utilize graph neural network. Our framework consists of three steps. (1) image pre-processing and vectorization of the floor plan image. (2) region adjacency graph conversion. (3) graph neural network on converted floor plan graphs. Our approach is able to capture different types of indoor elements including basic elements such as walls, doors, and symbols as well as spatial elements such as rooms and corridors. In addition, the proposed method can also detect element shapes. Experimental results show that our framework can classify indoor elements with an F1 score of 95%, with scale and rotation invariance. Furthermore, we propose a new graph neural network model that takes the distance between nodes into account, which is a valuable feature of spatial network data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.